processor.py 9.1 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys

import cv2
import numpy as np
import paddle
import pyclipper
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
from shapely.geometry import Polygon


class DBProcessTest(object):
    """
    DB pre-process for Test mode
    """

    def __init__(self, params):
        super(DBProcessTest, self).__init__()
        self.resize_type = 0
        if 'test_image_shape' in params:
            self.image_shape = params['test_image_shape']
            self.resize_type = 1
        if 'max_side_len' in params:
            self.max_side_len = params['max_side_len']
        else:
            self.max_side_len = 2400

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.max_side_len
        h, w, _ = img.shape

        # limit the max side
        if max(h, w) > limit_side_len:
            if h > w:
                ratio = float(limit_side_len) / h
            else:
                ratio = float(limit_side_len) / w
        else:
            ratio = 1.
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

C
fix  
chenjian 已提交
56 57
        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)
C
chenjian 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            sys.exit(0)
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        # return img, np.array([h, w])
        return img, [ratio_h, ratio_w]

    def resize_image_type1(self, im):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = im.shape[:2]  # (h, w, c)
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        return im, (ratio_h, ratio_w)

    def normalize(self, im):
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im.astype(np.float32, copy=False)
        im = im / 255
        im[:, :, 0] -= img_mean[0]
        im[:, :, 1] -= img_mean[1]
        im[:, :, 2] -= img_mean[2]
        im[:, :, 0] /= img_std[0]
        im[:, :, 1] /= img_std[1]
        im[:, :, 2] /= img_std[2]
        channel_swap = (2, 0, 1)
        im = im.transpose(channel_swap)
        return im

    def __call__(self, im):
C
fix  
chenjian 已提交
94
        src_h, src_w, _ = im.shape
C
chenjian 已提交
95 96 97 98 99 100
        if self.resize_type == 0:
            im, (ratio_h, ratio_w) = self.resize_image_type0(im)
        else:
            im, (ratio_h, ratio_w) = self.resize_image_type1(im)
        im = self.normalize(im)
        im = im[np.newaxis, :]
C
fix  
chenjian 已提交
101
        return [im, (src_h, src_w, ratio_h, ratio_w)]
C
chenjian 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

    def __init__(self, params):
        self.thresh = params['thresh']
        self.box_thresh = params['box_thresh']
        self.max_candidates = params['max_candidates']
        self.unclip_ratio = params['unclip_ratio']
        self.min_size = 3
        self.dilation_kernel = None
        self.score_mode = 'fast'

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]

        num_contours = min(len(contours), self.max_candidates)

        boxes = []
        scores = []
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            if self.score_mode == "fast":
                score = self.box_score_fast(pred, points.reshape(-1, 2))
            else:
                score = self.box_score_slow(pred, contour)
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores

    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [points[index_1], points[index_2], points[index_3], points[index_4]]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
        '''
        box_score_fast: use bbox mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

    def box_score_slow(self, bitmap, contour):
        '''
        box_score_slow: use polyon mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        contour = contour.copy()
        contour = np.reshape(contour, (-1, 2))

        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)

        contour[:, 0] = contour[:, 0] - xmin
        contour[:, 1] = contour[:, 1] - ymin

        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

C
fix  
chenjian 已提交
230
    def __call__(self, outs_dict, shape_list):
C
chenjian 已提交
231 232 233 234 235 236 237
        pred = outs_dict['maps']

        pred = pred[:, 0, :, :]
        segmentation = pred > self.thresh

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
C
fix  
chenjian 已提交
238
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
C
chenjian 已提交
239 240

            mask = segmentation[batch_index]
C
fix  
chenjian 已提交
241
            tmp_boxes, tmp_scores = self.boxes_from_bitmap(pred[batch_index], mask, src_w, src_h)
C
chenjian 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

            boxes_batch.append(tmp_boxes)
        return boxes_batch


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    img = image.copy()
    draw = ImageDraw.Draw(img)
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
        draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
        draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
        draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
        draw.line([(box[0][0] - 1, box[0][1] + 1), (box[1][0] - 1, box[1][1] + 1)], fill='red')
        draw.line([(box[1][0] - 1, box[1][1] + 1), (box[2][0] - 1, box[2][1] + 1)], fill='red')
        draw.line([(box[2][0] - 1, box[2][1] + 1), (box[3][0] - 1, box[3][1] + 1)], fill='red')
        draw.line([(box[3][0] - 1, box[3][1] + 1), (box[0][0] - 1, box[0][1] + 1)], fill='red')
    return img


def get_image_ext(image):
    if image.shape[2] == 4:
        return ".png"
    return ".jpg"