character.py 7.9 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import string

import numpy as np


class CharacterOps(object):
    """ Convert between text-label and text-index
    Args:
        config: config from yaml file
    """

    def __init__(self, config):
        self.character_type = config['character_type']
        self.max_text_len = config['max_text_length']
        if self.character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
        # use the custom dictionary
        elif self.character_type == "ch":
            character_dict_path = config['character_dict_path']
            add_space = False
            if 'use_space_char' in config:
                add_space = config['use_space_char']
            self.character_str = []
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
                    self.character_str.append(line)
            if add_space:
                self.character_str.append(" ")
            dict_character = list(self.character_str)
        elif self.character_type == "en_sensitive":
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        else:
            self.character_str = None
        self.beg_str = "sos"
        self.end_str = "eos"

        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
C
fix  
chenjian 已提交
62
        dict_character = ['blank'] + dict_character
C
chenjian 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
        if self.character_type == "en":
            text = text.lower()

        text_list = []
        for char in text:
            if char not in self.dict:
                continue
            text_list.append(self.dict[char])
        text = np.array(text_list)
        return text

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token
            char_list = [self.character[text_id] for text_id in text_index[batch_idx][selection]]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list).tolist()))
        return result_list

    def get_char_num(self):
        return len(self.character)

    def get_beg_end_flag_idx(self, beg_or_end):
        if self.loss_type == "attention":
            if beg_or_end == "beg":
                idx = np.array(self.dict[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx"\
                    % beg_or_end
            return idx
        else:
            err = "error in get_beg_end_flag_idx when using the loss %s"\
                % (self.loss_type)
            assert False, err

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


def cal_predicts_accuracy(char_ops, preds, preds_lod, labels, labels_lod, is_remove_duplicate=False):
    """
    Calculate prediction accuracy
    Args:
        char_ops: CharacterOps
        preds: preds result,text index
        preds_lod: lod tensor of preds
        labels: label of input image, text index
        labels_lod:  lod tensor of label
        is_remove_duplicate: Whether to remove duplicate characters,
                                 The default is False
    Return:
        acc: The accuracy of test set
        acc_num: The correct number of samples predicted
        img_num: The total sample number of the test set
    """
    acc_num = 0
    img_num = 0
    for ino in range(len(labels_lod) - 1):
        beg_no = preds_lod[ino]
        end_no = preds_lod[ino + 1]
        preds_text = preds[beg_no:end_no].reshape(-1)
        preds_text = char_ops.decode(preds_text, is_remove_duplicate)

        beg_no = labels_lod[ino]
        end_no = labels_lod[ino + 1]
        labels_text = labels[beg_no:end_no].reshape(-1)
        labels_text = char_ops.decode(labels_text, is_remove_duplicate)
        img_num += 1

        if preds_text == labels_text:
            acc_num += 1
    acc = acc_num * 1.0 / img_num
    return acc, acc_num, img_num


def cal_predicts_accuracy_srn(char_ops, preds, labels, max_text_len, is_debug=False):
    acc_num = 0
    img_num = 0

    char_num = char_ops.get_char_num()

    total_len = preds.shape[0]
    img_num = int(total_len / max_text_len)
    for i in range(img_num):
        cur_label = []
        cur_pred = []
        for j in range(max_text_len):
            if labels[j + i * max_text_len] != int(char_num - 1):  #0
                cur_label.append(labels[j + i * max_text_len][0])
            else:
                break

        for j in range(max_text_len + 1):
            if j < len(cur_label) and preds[j + i * max_text_len][0] != cur_label[j]:
                break
            elif j == len(cur_label) and j == max_text_len:
                acc_num += 1
                break
            elif j == len(cur_label) and preds[j + i * max_text_len][0] == int(char_num - 1):
                acc_num += 1
                break
    acc = acc_num * 1.0 / img_num
    return acc, acc_num, img_num


def convert_rec_attention_infer_res(preds):
    img_num = preds.shape[0]
    target_lod = [0]
    convert_ids = []
    for ino in range(img_num):
        end_pos = np.where(preds[ino, :] == 1)[0]
        if len(end_pos) <= 1:
            text_list = preds[ino, 1:]
        else:
            text_list = preds[ino, 1:end_pos[1]]
        target_lod.append(target_lod[ino] + len(text_list))
        convert_ids = convert_ids + list(text_list)
    convert_ids = np.array(convert_ids)
    convert_ids = convert_ids.reshape((-1, 1))
    return convert_ids, target_lod


def convert_rec_label_to_lod(ori_labels):
    img_num = len(ori_labels)
    target_lod = [0]
    convert_ids = []
    for ino in range(img_num):
        target_lod.append(target_lod[ino] + len(ori_labels[ino]))
        convert_ids = convert_ids + list(ori_labels[ino])
    convert_ids = np.array(convert_ids)
    convert_ids = convert_ids.reshape((-1, 1))
    return convert_ids, target_lod