base_nlp_dataset.py 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import csv
import io
import os

import numpy as np
import paddle.fluid as fluid

from paddlehub.env import DATA_HOME
from paddlehub.text.bert_tokenizer import BertTokenizer
from paddlehub.text.tokenizer import CustomTokenizer
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
from paddlehub.utils.xarfile import is_xarfile, unarchive


class InputExample(object):
    """
    The input data structure of Transformer modules (BERT, ERNIE and so on).
    """

    def __init__(self, guid: int, text_a: str, text_b: Optional[str] = None, label: Optional[str] = None):
        """
        The input data structure.
        Args:
          guid (:obj:`int`):
              Unique id for the input data.
          text_a (:obj:`str`, `optional`, defaults to :obj:`None`):
              The first sequence. For single sequence tasks, only this sequence must be specified.
          text_b (:obj:`str`, `optional`, defaults to :obj:`None`):
              The second sequence if sentence-pair.
          label (:obj:`str`, `optional`, defaults to :obj:`None`):
              The label of the example.
        Examples:
            .. code-block:: python
                from paddlehub.datasets.base_nlp_dataset import InputExample
                example = InputExample(guid=0,
                                text_a='15.4寸笔记本的键盘确实爽,基本跟台式机差不多了',
                                text_b='蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错',
                                label='1')
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label

    def __str__(self):
        if self.text_b is None:
            return "text={}\tlabel={}".format(self.text_a, self.label)
        else:
            return "text_a={}\ttext_b={},label={}".format(self.text_a, self.text_b, self.label)


class BaseNLPDataset(object):
    """
    The virtual base class for nlp datasets, such TextClassificationDataset, SeqLabelingDataset, and so on.
    The base class must be supered and re-implemented the method _read_file.
    """

    def __init__(self,
                 base_path: str,
                 tokenizer: Union[BertTokenizer, CustomTokenizer],
                 max_seq_len: Optional[int] = 128,
                 mode: Optional[str] = "train",
                 data_file: Optional[str] = None,
                 label_file: Optional[str] = None,
                 label_list: Optional[List[str]] = None):
        """
        Ags:
            base_path (:obj:`str`): The directory to the whole dataset.
            tokenizer (:obj:`BertTokenizer` or :obj:`CustomTokenizer`):
                It tokenizes the text and encodes the data as model needed.
            max_seq_len (:obj:`int`, `optional`, defaults to :128):
                If set to a number, will limit the total sequence returned so that it has a maximum length.
            mode (:obj:`str`, `optional`, defaults to `train`):
                It identifies the dataset mode (train, test or dev).
            data_file(:obj:`str`, `optional`, defaults to :obj:`None`):
                The data file name, which is relative to the base_path.
            label_file(:obj:`str`, `optional`, defaults to :obj:`None`):
                The label file name, which is relative to the base_path.
                It is all labels of the dataset, one line one label.
            label_list(:obj:`List[str]`, `optional`, defaults to :obj:`None`):
                The list of all labels of the dataset
        """
        self.data_file = os.path.join(base_path, data_file)
        self.label_list = label_list

        self.mode = mode
        self.tokenizer = tokenizer
        self.max_seq_len = max_seq_len

        if label_file:
            self.label_file = os.path.join(base_path, label_file)
            if not self.label_list:
                self.label_list = self._load_label_data()
            else:
                logger.warning("As label_list has been assigned, label_file is noneffective")
        if self.label_list:
            self.label_map = {item: index for index, item in enumerate(self.label_list)}

    def _load_label_data(self):
        """
        Loads labels from label file.
        """
        if os.path.exists(self.label_file):
            with open(self.label_file, "r", encoding="utf8") as f:
                return f.read().strip().split("\n")
        else:
            raise RuntimeError("The file {} is not found.".format(self.label_file))

    def _download_and_uncompress_dataset(self, destination: str, url: str):
        """
        Downloads dataset and uncompresses it.
        Args:
           destination (:obj:`str`): The dataset cached directory.
           url (:obj: str): The link to be downloaded a dataset.
        """
        if not os.path.exists(destination):
            dataset_package = download(url=url, path=DATA_HOME)
            if is_xarfile(dataset_package):
                unarchive(dataset_package, DATA_HOME)
        else:
            logger.info("Dataset {} already cached.".format(destination))

    def _read_file(self, input_file: str, is_file_with_header: bool = False):
        """
        Reads the files.
        Args:
            input_file (:obj:str) : The file to be read.
            is_file_with_header(:obj:bool, `optional`, default to :obj: False) :
                Whether or not the file is with the header introduction.
        """
        raise NotImplementedError

    def get_labels(self):
        """
        Gets all labels.
        """
        return self.label_list


class TextClassificationDataset(BaseNLPDataset, fluid.io.Dataset):
    """
    The dataset class which is fit for all datatset of text classification.
    """

    def __init__(self,
                 base_path: str,
                 tokenizer: Union[BertTokenizer, CustomTokenizer],
                 max_seq_len: int = 128,
                 mode: str = "train",
                 data_file: str = None,
                 label_file: str = None,
                 label_list: list = None,
                 is_file_with_header: bool = False):
        """
        Ags:
            base_path (:obj:`str`): The directory to the whole dataset.
            tokenizer (:obj:`BertTokenizer` or :obj:`CustomTokenizer`):
                It tokenizes the text and encodes the data as model needed.
            max_seq_len (:obj:`int`, `optional`, defaults to :128):
                If set to a number, will limit the total sequence returned so that it has a maximum length.
            mode (:obj:`str`, `optional`, defaults to `train`):
                It identifies the dataset mode (train, test or dev).
            data_file(:obj:`str`, `optional`, defaults to :obj:`None`):
                The data file name, which is relative to the base_path.
            label_file(:obj:`str`, `optional`, defaults to :obj:`None`):
                The label file name, which is relative to the base_path.
                It is all labels of the dataset, one line one label.
            label_list(:obj:`List[str]`, `optional`, defaults to :obj:`None`):
                The list of all labels of the dataset
            is_file_with_header(:obj:bool, `optional`, default to :obj: False) :
                Whether or not the file is with the header introduction.
        """
        super(TextClassificationDataset, self).__init__(
            base_path=base_path,
            tokenizer=tokenizer,
            max_seq_len=max_seq_len,
            mode=mode,
            data_file=data_file,
            label_file=label_file,
            label_list=label_list)
        self.examples = self._read_file(self.data_file, is_file_with_header)

        self.records = self._convert_examples_to_records(self.examples)

    def _read_file(self, input_file, is_file_with_header: bool = False) -> List[InputExample]:
        """
        Reads a tab separated value file.
        Args:
            input_file (:obj:str) : The file to be read.
            is_file_with_header(:obj:bool, `optional`, default to :obj: False) :
                Whether or not the file is with the header introduction.
        Returns:
            examples (:obj:`List[InputExample]`): All the input data.
        """
        if not os.path.exists(input_file):
            raise RuntimeError("The file {} is not found.".format(input_file))
        else:
            with io.open(input_file, "r", encoding="UTF-8") as f:
                reader = csv.reader(f, delimiter="\t", quotechar=None)
                examples = []
                seq_id = 0
                header = next(reader) if is_file_with_header else None
                for line in reader:
                    example = InputExample(guid=seq_id, label=line[0], text_a=line[1])
                    seq_id += 1
                    examples.append(example)
                return examples

    def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dict]:
        """
        Converts all examples to records which the model needs.
        Args:
            examples(obj:`List[InputExample]`): All data examples returned by _read_file.
        Returns:
            records(:obj:`List[dict]`): All records which the model needs.
        """
        records = []
        for example in examples:
            record = self.tokenizer.encode(text=example.text_a, text_pair=example.text_b, max_seq_len=self.max_seq_len)
            # CustomTokenizer will tokenize the text firstly and then lookup words in the vocab
            # When all words are not found in the vocab, the text will be dropped.
            if not record:
                logger.info(
                    "The text %s has been dropped as it has no words in the vocab after tokenization." % example.text_a)
                continue
            if example.label:
                record['label'] = self.label_map[example.label]
            records.append(record)
        return records

    def __getitem__(self, idx):
        record = self.records[idx]
        if 'label' in record.keys():
            if isinstance(self.tokenizer, BertTokenizer):
                return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['label'])
            elif isinstance(self.tokenizer, CustomTokenizer):
                return np.array(record['text']), np.array(record['seq_len']), np.array(record['label'])
        else:
            if isinstance(self.tokenizer, BertTokenizer):
                return np.array(record['input_ids']), np.array(record['segment_ids'])
            elif isinstance(self.tokenizer, CustomTokenizer):
                return np.array(record['text']), np.array(record['seq_len'])

    def __len__(self):
        return len(self.records)