predict.py 4.1 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
Z
Zeyu Chen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
22
import ast
Z
Zeyu Chen 已提交
23
import numpy as np
24 25
import os
import time
Z
Zeyu Chen 已提交
26 27 28 29 30 31 32 33

import paddle
import paddle.fluid as fluid
import paddlehub as hub

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
34
parser.add_argument("--batch_size",     type=int,   default=1, help="Total examples' number in batch for training.")
Z
Zeyu Chen 已提交
35
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
36
parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False")
Z
Zeyu Chen 已提交
37 38 39 40 41 42
args = parser.parse_args()
# yapf: enable.

if __name__ == '__main__':
    # loading Paddlehub ERNIE pretrained model
    module = hub.Module(name="ernie")
43
    inputs, outputs, program = module.context(max_seq_len=args.max_seq_len)
Z
Zeyu Chen 已提交
44 45 46 47 48 49 50 51

    # Sentence classification  dataset reader
    dataset = hub.dataset.ChnSentiCorp()
    reader = hub.reader.ClassifyReader(
        dataset=dataset,
        vocab_path=module.get_vocab_path(),
        max_seq_len=args.max_seq_len)

52
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
Z
Zeyu Chen 已提交
53
    exe = fluid.Executor(place)
W
wuzewu 已提交
54

55 56 57 58
    # Construct transfer learning network
    # Use "pooled_output" for classification tasks on an entire sentence.
    # Use "sequence_output" for token-level output.
    pooled_output = outputs["pooled_output"]
Z
Zeyu Chen 已提交
59

60 61 62 63 64 65 66 67
    # Setup feed list for data feeder
    # Must feed all the tensor of ERNIE's module need
    feed_list = [
        inputs["input_ids"].name,
        inputs["position_ids"].name,
        inputs["segment_ids"].name,
        inputs["input_mask"].name,
    ]
Z
Zeyu Chen 已提交
68

69 70 71 72 73 74 75
    # Setup runing config for PaddleHub Finetune API
    config = hub.RunConfig(
        use_cuda=args.use_gpu,
        batch_size=args.batch_size,
        enable_memory_optim=False,
        checkpoint_dir=args.checkpoint_dir,
        strategy=hub.finetune.strategy.DefaultFinetuneStrategy())
76

77 78 79 80 81 82 83
    # Define a classfication finetune task by PaddleHub's API
    cls_task = hub.TextClassifierTask(
        data_reader=reader,
        feature=pooled_output,
        feed_list=feed_list,
        num_classes=dataset.num_labels,
        config=config)
Z
Zeyu Chen 已提交
84

85 86 87 88 89 90 91 92 93 94
    # Data to be prdicted
    data = [
        ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"],
        [
            "还稍微重了点,可能是硬盘大的原故,还要再轻半斤就好了。其他要进一步验证。贴的几种膜气泡较多,用不了多久就要更换了,屏幕膜稍好点,但比没有要强多了。建议配赠几张膜让用用户自己贴。"
        ],
        [
            "前台接待太差,酒店有A B楼之分,本人check-in后,前台未告诉B楼在何处,并且B楼无明显指示;房间太小,根本不像4星级设施,下次不会再选择入住此店啦"
        ], ["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]
    ]
Z
Zeyu Chen 已提交
95

96 97 98 99 100 101 102 103
    index = 0
    results = cls_task.predict(data=data)
    for batch_result in results:
        # get predict index
        batch_result = np.argmax(batch_result, axis=2)[0]
        for result in batch_result:
            print("%s\tpredict=%s" % (data[index][0], result))
            index += 1