nlp_module.py 14.4 KB
Newer Older
S
Steffy-zxf 已提交
1
# coding:utf-8
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

S
Steffy-zxf 已提交
20 21 22
import argparse
import ast
import json
23 24
import os
import re
S
Steffy-zxf 已提交
25
import six
26

S
Steffy-zxf 已提交
27
import numpy as np
28
import paddle.fluid as fluid
S
Steffy-zxf 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
import paddlehub as hub
from paddlehub.common.logger import logger
from paddlehub.common.utils import sys_stdin_encoding
from paddlehub.io.parser import txt_parser
from paddlehub.module.module import runnable


class DataFormatError(Exception):
    def __init__(self, *args):
        self.args = args


class NLPBaseModule(hub.Module):
    def _initialize(self):
        """
        initialize with the necessary elements
        This method must be overrided.
        """
        raise NotImplementedError()

    def get_vocab_path(self):
        """
        Get the path to the vocabulary whih was used to pretrain

        Returns:
             self.vocab_path(str): the path to vocabulary
        """
        return self.vocab_path


class NLPPredictionModule(NLPBaseModule):
    def _set_config(self):
        """
        predictor config setting
        """
        cpu_config = AnalysisConfig(self.pretrained_model_path)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        self.cpu_predictor = create_paddle_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = AnalysisConfig(self.pretrained_model_path)
            gpu_config.disable_glog_info()
            gpu_config.enable_use_gpu(memory_pool_init_size_mb=500, device_id=0)
            self.gpu_predictor = create_paddle_predictor(gpu_config)

    def texts2tensor(self, texts):
        """
        Tranform the texts(dict) to PaddleTensor
        Args:
             texts(list): each element is a dict that must have a named 'processed' key whose value is word_ids, such as
                          texts = [{'processed': [23, 89, 43, 906]}]
        Returns:
             tensor(PaddleTensor): tensor with texts data
        """
        lod = [0]
        data = []
        for i, text in enumerate(texts):
            data += text['processed']
            lod.append(len(text['processed']) + lod[i])
        tensor = PaddleTensor(np.array(data).astype('int64'))
        tensor.name = "words"
        tensor.lod = [lod]
        tensor.shape = [lod[-1], 1]
        return tensor

    def to_unicode(self, texts):
        """
        Convert each element's type(str) of texts(list) to unicode in python2.7
        Args:
             texts(list): each element's type is str in python2.7
        Returns:
             texts(list): each element's type is unicode in python2.7
        """
        if six.PY2:
            unicode_texts = []
            for text in texts:
                if not isinstance(text, six.string_types):
                    unicode_texts.append(
                        text.decode(sys_stdin_encoding()).decode("utf8"))
                else:
                    unicode_texts.append(text)
            texts = unicode_texts
        return texts

    @runnable
    def run_cmd(self, argvs):
        """
        Run as a command
        """
        self.parser = argparse.ArgumentParser(
S
Steffy-zxf 已提交
127 128
            description='Run the %s module.' % self.name,
            prog='hub run %s' % self.name,
S
Steffy-zxf 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
            usage='%(prog)s',
            add_help=True)

        self.arg_input_group = self.parser.add_argument_group(
            title="Input options", description="Input data. Required")
        self.arg_config_group = self.parser.add_argument_group(
            title="Config options",
            description=
            "Run configuration for controlling module behavior, not required.")

        self.add_module_config_arg()
        self.add_module_input_arg()

        args = self.parser.parse_args(argvs)

        try:
            input_data = self.check_input_data(args)
        except DataFormatError and RuntimeError:
            self.parser.print_help()
            return None
149

S
Steffy-zxf 已提交
150 151 152 153
        results = self.predict(
            texts=input_data, use_gpu=args.use_gpu, batch_size=args.batch_size)

        return results
154

S
Steffy-zxf 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    def add_module_config_arg(self):
        """
        Add the command config options
        """
        self.arg_config_group.add_argument(
            '--use_gpu',
            type=ast.literal_eval,
            default=False,
            help="whether use GPU for prediction")

        self.arg_config_group.add_argument(
            '--batch_size',
            type=int,
            default=1,
            help="batch size for prediction")

    def add_module_input_arg(self):
        """
        Add the command input options
        """
        self.arg_input_group.add_argument(
            '--input_file',
            type=str,
            default=None,
            help="file contain input data")
        self.arg_input_group.add_argument(
            '--input_text', type=str, default=None, help="text to predict")

    def check_input_data(self, args):
        input_data = []
        if args.input_file:
            if not os.path.exists(args.input_file):
                print("File %s is not exist." % args.input_file)
                raise RuntimeError
            else:
                input_data = txt_parser.parse(args.input_file, use_strip=True)
        elif args.input_text:
            if args.input_text.strip() != '':
                if six.PY2:
                    input_data = [
                        args.input_text.decode(
                            sys_stdin_encoding()).decode("utf8")
                    ]
                else:
                    input_data = [args.input_text]
            else:
                print(
                    "ERROR: The input data is inconsistent with expectations.")

        if input_data == []:
            print("ERROR: The input data is inconsistent with expectations.")
            raise DataFormatError

        return input_data


class _TransformerEmbeddingTask(hub.BaseTask):
212 213 214 215 216 217 218
    def __init__(self,
                 pooled_feature,
                 seq_feature,
                 feed_list,
                 data_reader,
                 config=None):
        main_program = pooled_feature.block.program
S
Steffy-zxf 已提交
219
        super(_TransformerEmbeddingTask, self).__init__(
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            main_program=main_program,
            data_reader=data_reader,
            feed_list=feed_list,
            config=config,
            metrics_choices=[])
        self.pooled_feature = pooled_feature
        self.seq_feature = seq_feature

    def _build_net(self):
        return [self.pooled_feature, self.seq_feature]

    def _postprocessing(self, run_states):
        results = []
        for batch_state in run_states:
            batch_result = batch_state.run_results
            batch_pooled_features = batch_result[0]
            batch_seq_features = batch_result[1]
            for i in range(len(batch_pooled_features)):
                results.append(
                    [batch_pooled_features[i], batch_seq_features[i]])
        return results


S
Steffy-zxf 已提交
243 244 245 246
class TransformerModule(NLPBaseModule):
    """
    Tranformer Module base class can be used by BERT, ERNIE, RoBERTa and so on.
    """
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

    def init_pretraining_params(self, exe, pretraining_params_path,
                                main_program):
        assert os.path.exists(
            pretraining_params_path
        ), "[%s] cann't be found." % pretraining_params_path

        def existed_params(var):
            if not isinstance(var, fluid.framework.Parameter):
                return False
            return os.path.exists(
                os.path.join(pretraining_params_path, var.name))

        fluid.io.load_vars(
            exe,
            pretraining_params_path,
            main_program=main_program,
            predicate=existed_params)
        logger.info("Load pretraining parameters from {}.".format(
            pretraining_params_path))

    def context(
            self,
            max_seq_len=128,
            trainable=True,
    ):
        """
        get inputs, outputs and program from pre-trained module

        Args:
            max_seq_len (int): the max sequence length
            trainable (bool): optimizing the pre-trained module params during training or not

        Returns: inputs, outputs, program.
                 The inputs is a dict with keys named input_ids, position_ids, segment_ids, input_mask and task_ids
                 The outputs is a dict with two keys named pooled_output and sequence_output.

        """

        assert max_seq_len <= self.MAX_SEQ_LEN and max_seq_len >= 1, "max_seq_len({}) should be in the range of [1, {}]".format(
            max_seq_len, self.MAX_SEQ_LEN)

        module_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(module_program, startup_program):
            with fluid.unique_name.guard("@HUB_%s@" % self.name):
                input_ids = fluid.layers.data(
                    name='input_ids',
                    shape=[-1, max_seq_len, 1],
                    dtype='int64',
                    lod_level=0)
                position_ids = fluid.layers.data(
                    name='position_ids',
                    shape=[-1, max_seq_len, 1],
                    dtype='int64',
                    lod_level=0)
                segment_ids = fluid.layers.data(
                    name='segment_ids',
                    shape=[-1, max_seq_len, 1],
                    dtype='int64',
                    lod_level=0)
                input_mask = fluid.layers.data(
                    name='input_mask',
                    shape=[-1, max_seq_len, 1],
                    dtype='float32',
                    lod_level=0)
                pooled_output, sequence_output = self.net(
                    input_ids, position_ids, segment_ids, input_mask)

        inputs = {
            'input_ids': input_ids,
            'position_ids': position_ids,
            'segment_ids': segment_ids,
            'input_mask': input_mask,
        }

        outputs = {
            "pooled_output": pooled_output,
            "sequence_output": sequence_output,
            0: pooled_output,
            1: sequence_output
        }

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        self.init_pretraining_params(
            exe, self.params_path, main_program=startup_program)

        self.params_layer = {}
        for param in module_program.global_block().iter_parameters():
            param.trainable = trainable
            match = re.match(r'.*layer_(\d+).*', param.name)
            if match:
                # layer num begins from 0
                layer = match.group(1)
                self.params_layer[param.name] = int(layer)

        return inputs, outputs, module_program

    def get_embedding(self, texts, use_gpu=False, batch_size=1):
        """
        get pooled_output and sequence_output for input texts.
S
Steffy-zxf 已提交
350
        Warnings: this method depends on Paddle Inference Library, it may not work properly in PaddlePaddle <= 1.6.2.
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

        Args:
            texts (list): each element is a text sample, each sample include text_a and text_b where text_b can be omitted.
                          for example: [[sample0_text_a, sample0_text_b], [sample1_text_a, sample1_text_b], ...]
            use_gpu (bool): use gpu or not, default False.
            batch_size (int): the data batch size, default 1.

        Returns:
            pooled_outputs(list): its element is a numpy array, the first feature of each text sample.
            sequence_outputs(list): its element is a numpy array, the whole features of each text sample.
        """
        if not hasattr(
                self, "emb_job"
        ) or self.emb_job["batch_size"] != batch_size or self.emb_job[
                "use_gpu"] != use_gpu:
            inputs, outputs, program = self.context(
                trainable=True, max_seq_len=self.MAX_SEQ_LEN)

            reader = hub.reader.ClassifyReader(
                dataset=None,
                vocab_path=self.get_vocab_path(),
                max_seq_len=self.MAX_SEQ_LEN,
                sp_model_path=self.get_spm_path() if hasattr(
                    self, "get_spm_path") else None,
                word_dict_path=self.get_word_dict_path() if hasattr(
                    self, "word_dict_path") else None)

            feed_list = [
                inputs["input_ids"].name,
                inputs["position_ids"].name,
                inputs["segment_ids"].name,
                inputs["input_mask"].name,
            ]

            pooled_feature, seq_feature = outputs["pooled_output"], outputs[
                "sequence_output"]

            config = hub.RunConfig(
                use_data_parallel=False,
                use_cuda=use_gpu,
                batch_size=batch_size)

            self.emb_job = {}
S
Steffy-zxf 已提交
394
            self.emb_job["task"] = _TransformerEmbeddingTask(
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
                pooled_feature=pooled_feature,
                seq_feature=seq_feature,
                feed_list=feed_list,
                data_reader=reader,
                config=config,
            )
            self.emb_job["batch_size"] = batch_size
            self.emb_job["use_gpu"] = use_gpu

        return self.emb_job["task"].predict(
            data=texts, return_result=True, accelerate_mode=True)

    def get_spm_path(self):
        if hasattr(self, "spm_path"):
            return self.spm_path
        else:
            return None

    def get_word_dict_path(self):
        if hasattr(self, "word_dict_path"):
            return self.word_dict_path
        else:
            return None

    def get_params_layer(self):
        if not hasattr(self, "params_layer"):
            raise AttributeError(
                "The module context has not been initialized. "
                "Please call context() before using get_params_layer")
        return self.params_layer