module.py 11.5 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# -*- coding:utf-8 -*-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
David Lin 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
from __future__ import absolute_import
from __future__ import division

import ast
import argparse
import os

import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
from paddlehub.common.paddle_helper import add_vars_prefix

from efficientnetb0_small_imagenet.processor import postprocess, base64_to_cv2
from efficientnetb0_small_imagenet.data_feed import reader
from efficientnetb0_small_imagenet.efficientnet import EfficientNetB0_small


@moduleinfo(
    name="efficientnetb0_small_imagenet",
    type="CV/image_classification",
W
wuzewu 已提交
38 39
    author="paddlepaddle",
    author_email="paddle-dev@baidu.com",
D
David Lin 已提交
40
    summary=
W
wuzewu 已提交
41
    "EfficientNetB0 is a image classfication model, this module is trained with imagenet datasets.",
D
David Lin 已提交
42
    version="1.0.0")
S
Steffy-zxf 已提交
43
class EfficientNetB0SmallImageNet(hub.Module):
D
David Lin 已提交
44 45
    def _initialize(self):
        self.default_pretrained_model_path = os.path.join(
S
Steffy-zxf 已提交
46
            self.directory, "efficientnetb0_small_imagenet_infer_model")
D
David Lin 已提交
47 48 49
        label_file = os.path.join(self.directory, "label_list.txt")
        with open(label_file, 'r', encoding='utf-8') as file:
            self.label_list = file.read().split("\n")[:-1]
S
Steffy-zxf 已提交
50 51
        self.classification = self.classify
        self._set_config()
D
David Lin 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    def get_expected_image_width(self):
        return 224

    def get_expected_image_height(self):
        return 224

    def get_pretrained_images_mean(self):
        im_mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3)
        return im_mean

    def get_pretrained_images_std(self):
        im_std = np.array([0.229, 0.224, 0.225]).reshape(1, 3)
        return im_std

    def _set_config(self):
        """
        predictor config setting
        """
        cpu_config = AnalysisConfig(self.default_pretrained_model_path)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        self.cpu_predictor = create_paddle_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = AnalysisConfig(self.default_pretrained_model_path)
            gpu_config.disable_glog_info()
            gpu_config.enable_use_gpu(
                memory_pool_init_size_mb=1000, device_id=0)
            self.gpu_predictor = create_paddle_predictor(gpu_config)

S
Steffy-zxf 已提交
89 90 91 92 93
    def context(self,
                trainable=True,
                pretrained=True,
                override_params=None,
                phase='train'):
D
David Lin 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106
        """context for transfer learning.

        Args:
            trainable (bool): Set parameters in program to be trainable.
            pretrained (bool) : Whether to load pretrained model.

        Returns:
            inputs (dict): key is 'image', corresponding vaule is image tensor.
            outputs (dict): key is :
                'classification', corresponding value is the result of classification.
                'feature_map', corresponding value is the result of the layer before the fully connected layer.
            context_prog (fluid.Program): program for transfer learning.
        """
S
Steffy-zxf 已提交
107 108
        if phase in ["dev", "test", "predict", "eval"]:
            is_test = True
S
Steffy-zxf 已提交
109 110
        elif phase in ["train"]:
            is_test = False
S
Steffy-zxf 已提交
111 112 113 114 115
        else:
            raise ValueError(
                "Phase %s is error, which must be one of train, dev, test, eval and predict."
                % phase)

D
David Lin 已提交
116 117 118 119 120 121
        context_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(context_prog, startup_prog):
            with fluid.unique_name.guard():
                image = fluid.layers.data(
                    name="image", shape=[3, 224, 224], dtype="float32")
S
Steffy-zxf 已提交
122 123
                efficientnet_b0 = EfficientNetB0_small(
                    override_params=override_params)
W
wuzewu 已提交
124
                output, feature_map = efficientnet_b0.net(
S
Steffy-zxf 已提交
125 126 127
                    input=image,
                    class_dim=len(self.label_list),
                    is_test=is_test)
D
David Lin 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

                name_prefix = '@HUB_{}@'.format(self.name)
                inputs = {'image': name_prefix + image.name}
                outputs = {
                    'classification': name_prefix + output.name,
                    'feature_map': name_prefix + feature_map.name
                }
                add_vars_prefix(context_prog, name_prefix)
                add_vars_prefix(startup_prog, name_prefix)
                global_vars = context_prog.global_block().vars
                inputs = {
                    key: global_vars[value]
                    for key, value in inputs.items()
                }
                outputs = {
                    key: global_vars[value]
                    for key, value in outputs.items()
                }

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                # pretrained
                if pretrained:

                    def _if_exist(var):
                        b = os.path.exists(
                            os.path.join(self.default_pretrained_model_path,
                                         var.name))
                        return b

                    fluid.io.load_vars(
                        exe,
                        self.default_pretrained_model_path,
                        context_prog,
                        predicate=_if_exist)
                else:
                    exe.run(startup_prog)
                # trainable
                for param in context_prog.global_block().iter_parameters():
                    param.trainable = trainable
        return inputs, outputs, context_prog

S
Steffy-zxf 已提交
170 171 172 173 174 175
    def classify(self,
                 images=None,
                 paths=None,
                 batch_size=1,
                 use_gpu=False,
                 top_k=1):
D
David Lin 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188
        """
        API for image classification.

        Args:
            images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR.
            paths (list[str]): The paths of images.
            batch_size (int): batch size.
            use_gpu (bool): Whether to use gpu.
            top_k (int): Return top k results.

        Returns:
            res (list[dict]): The classfication results.
        """
W
wuzewu 已提交
189 190 191 192 193 194
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
            except:
                raise RuntimeError(
195
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
W
wuzewu 已提交
196 197
                )

D
David Lin 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        all_data = list()
        for yield_data in reader(images, paths):
            all_data.append(yield_data)

        total_num = len(all_data)
        loop_num = int(np.ceil(total_num / batch_size))

        res = list()
        for iter_id in range(loop_num):
            batch_data = list()
            handle_id = iter_id * batch_size
            for image_id in range(batch_size):
                try:
                    batch_data.append(all_data[handle_id + image_id])
                except:
                    pass
            # feed batch image
            batch_image = np.array([data['image'] for data in batch_data])
            batch_image = PaddleTensor(batch_image.copy())
            predictor_output = self.gpu_predictor.run([
                batch_image
            ]) if use_gpu else self.cpu_predictor.run([batch_image])
            out = postprocess(
                data_out=predictor_output[0].as_ndarray(),
                label_list=self.label_list,
                top_k=top_k)
            res += out
        return res

    def save_inference_model(self,
                             dirname,
                             model_filename=None,
                             params_filename=None,
                             combined=True):
        if combined:
            model_filename = "__model__" if not model_filename else model_filename
            params_filename = "__params__" if not params_filename else params_filename
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        program, feeded_var_names, target_vars = fluid.io.load_inference_model(
            dirname=self.default_pretrained_model_path, executor=exe)

        fluid.io.save_inference_model(
            dirname=dirname,
            main_program=program,
            executor=exe,
            feeded_var_names=feeded_var_names,
            target_vars=target_vars,
            model_filename=model_filename,
            params_filename=params_filename)

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
S
Steffy-zxf 已提交
256
        results = self.classify(images=images_decode, **kwargs)
D
David Lin 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        return results

    @runnable
    def run_cmd(self, argvs):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)
        self.arg_input_group = self.parser.add_argument_group(
            title="Input options", description="Input data. Required")
        self.arg_config_group = self.parser.add_argument_group(
            title="Config options",
            description=
            "Run configuration for controlling module behavior, not required.")
        self.add_module_config_arg()
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
S
Steffy-zxf 已提交
278
        results = self.classify(
D
David Lin 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
            paths=[args.input_path],
            batch_size=args.batch_size,
            use_gpu=args.use_gpu)
        return results

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument(
            '--use_gpu',
            type=ast.literal_eval,
            default=False,
            help="whether use GPU or not.")
        self.arg_config_group.add_argument(
            '--batch_size',
            type=ast.literal_eval,
            default=1,
            help="batch size.")
        self.arg_config_group.add_argument(
            '--top_k',
            type=ast.literal_eval,
            default=1,
            help="Return top k results.")

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
        self.arg_input_group.add_argument(
            '--input_path', type=str, help="path to image.")
S
Steffy-zxf 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324


if __name__ == '__main__':
    b0 = EfficientNetB0SmallImageNet()
    b0.context()
    import cv2
    test_image = [cv2.imread('dog.jpeg')]
    res = b0.classification(images=test_image)
    print(res)
    res = b0.classification(paths=['dog.jpeg'])
    print(res)
    res = b0.classification(images=test_image)
    print(res)
    res = b0.classify(images=test_image)
    print(res)