sentiment_classify.py 12.4 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
# coding: utf-8
import sys
import os
import time
import unittest
import contextlib
import logging
import argparse
import ast

import paddle.fluid as fluid
import paddle_hub as hub

import utils
from nets import bow_net
from nets import cnn_net
from nets import lstm_net
from nets import bilstm_net
from nets import gru_net
logger = logging.getLogger("paddle-fluid")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser("Sentiment Classification.")
    # training data path
    parser.add_argument(
        "--train_data_path",
        type=str,
        required=False,
        help="The path of trainning data. Should be given in train mode!")
    # test data path
    parser.add_argument(
        "--test_data_path",
        type=str,
        required=False,
        help="The path of test data. Should be given in eval or infer mode!")
    # word_dict path
    parser.add_argument(
        "--word_dict_path",
        type=str,
        required=True,
        help="The path of word dictionary.")
    # current mode
    parser.add_argument(
        "--mode",
        type=str,
        required=True,
        choices=['train', 'eval', 'infer', 'finetune'],
        help="train/eval/infer mode")
    # model type
    parser.add_argument(
        "--model_type", type=str, default="bow_net", help="type of model")
    # model save path
    parser.add_argument(
        "--model_path",
        type=str,
        default="models",
        required=True,
        help="The path to saved the trained models.")
    # Number of passes for the training task.
    parser.add_argument(
        "--num_passes",
        type=int,
        default=10,
        help="Number of passes for the training task.")
    # Batch size
    parser.add_argument(
        "--batch_size",
        type=int,
        default=256,
        help="The number of training examples in one forward/backward pass.")
    # lr value for training
    parser.add_argument(
        "--lr", type=float, default=0.002, help="The lr value for training.")
    # Whether to use gpu
    parser.add_argument(
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
        help="Whether to use gpu to train the model.")
    # parallel train
    parser.add_argument(
        "--is_parallel",
        type=ast.literal_eval,
        default=False,
        help="Whether to train the model in parallel.")
    args = parser.parse_args()
    return args


def train_net(train_reader,
              word_dict,
              network_name,
              use_gpu,
              parallel,
              save_dirname,
              lr=0.002,
              batch_size=128,
              pass_num=30):
    """
    train network
    """
    if network_name == "bilstm_net":
        network = bilstm_net
    elif network_name == "bow_net":
        network = bow_net
    elif network_name == "cnn_net":
        network = cnn_net
    elif network_name == "lstm_net":
        network = lstm_net
    elif network_name == "gru_net":
        network = gru_net
    else:
        print("unknown network type")
        return

    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    cost, acc, pred, sent_emb = network(data, label, len(word_dict) + 2)

    # set optimizer
    sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=lr)
    sgd_optimizer.minimize(cost)

    # set place, executor, datafeeder
    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(feed_list=["words", "label"], place=place)
    exe.run(fluid.default_startup_program())
    # start training...

    for pass_id in range(pass_num):
        data_size, data_count, total_acc, total_cost = 0, 0, 0.0, 0.0
        for batch in train_reader():
            avg_cost_np, avg_acc_np = exe.run(
                fluid.default_main_program(),
                feed=feeder.feed(batch),
                fetch_list=[cost, acc],
                return_numpy=True)
            data_size = len(batch)
            total_acc += data_size * avg_acc_np
            total_cost += data_size * avg_cost_np
            data_count += data_size
        avg_cost = total_cost / data_count
        avg_acc = total_acc / data_count
        print("[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f" %
              (pass_id, avg_acc, avg_cost))

    # create Senta module
    module_dir = os.path.join(save_dirname, network_name)
    signature = hub.create_signature(
        "default", inputs=[data], outputs=[sent_emb])
    hub.create_module(
        sign_arr=signature,
        program=fluid.default_main_program(),
        path=module_dir)


def retrain_net(train_reader,
                word_dict,
                network_name,
                use_gpu,
                parallel,
                save_dirname,
                lr=0.002,
                batch_size=128,
                pass_num=30):
    """
    train network
    """
    if network_name == "bilstm_net":
        network = bilstm_net
    elif network_name == "bow_net":
        network = bow_net
    elif network_name == "cnn_net":
        network = cnn_net
    elif network_name == "lstm_net":
        network = lstm_net
    elif network_name == "gru_net":
        network = gru_net
    else:
        print("unknown network type")
        return

    emb_dim = 128
    hid_dim = 128
    hid_dim2 = 96
    class_dim = 2
    dict_dim = len(word_dict) + 2

    module_dir = os.path.join(save_dirname, network_name)
    print("module_dir", module_dir)
    module = hub.Module(module_dir=module_dir)

    main_program = fluid.Program()
    startup_program = fluid.Program()

    # use switch program to test fine-tuning
    fluid.framework.switch_main_program(module.get_inference_program())

    # remove feed fetch operator and variable
    hub.ModuleUtils.remove_feed_fetch_op(fluid.default_main_program())

    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    data = module.get_feed_var_by_index(0)
    #TODO(ZeyuChen): how to get output paramter according to proto config
    sent_emb = module.get_fetch_var_by_index(0)

    fc_2 = fluid.layers.fc(
        input=sent_emb, size=hid_dim2, act="tanh", name="bow_fc2")
    # softmax layer
    pred = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    # print(fluid.default_main_program())
    cost = fluid.layers.mean(
        fluid.layers.cross_entropy(input=pred, label=label))
    acc = fluid.layers.accuracy(input=pred, label=label)

    # set optimizer
    sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=lr)
    sgd_optimizer.minimize(cost)

    # set place, executor, datafeeder
    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(feed_list=["words", "label"], place=place)
    exe.run(fluid.default_startup_program())
    # start training...

    for pass_id in range(pass_num):
        data_size, data_count, total_acc, total_cost = 0, 0, 0.0, 0.0
        for batch in train_reader():
            avg_cost_np, avg_acc_np = exe.run(
                fluid.default_main_program(),
                feed=feeder.feed(batch),
                fetch_list=[cost, acc],
                return_numpy=True)
            data_size = len(batch)
            total_acc += data_size * avg_acc_np
            total_cost += data_size * avg_cost_np
            data_count += data_size
        avg_cost = total_cost / data_count
        avg_acc = total_acc / data_count
        print("[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f" %
              (pass_id, avg_acc, avg_cost))

    # save the model

    module_dir = os.path.join(save_dirname, network_name)
    signature = hub.create_signature(
        "default", inputs=[data], outputs=[sent_emb])
    hub.create_module(
        sign_arr=signature,
        program=fluid.default_main_program(),
        path=module_dir)


def eval_net(test_reader, use_gpu, model_path=None):
    """
    Evaluation function
    """
    if model_path is None:
        print(str(model_path) + "can not be found")
        return
    # set place, executor
    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # load the saved model
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(model_path, exe)

        # compute 2class and 3class accuracy
        class2_acc, class3_acc = 0.0, 0.0
        total_count, neu_count = 0, 0

        for data in test_reader():
            # infer a batch
            pred = exe.run(
                inference_program,
                feed=utils.data2tensor(data, place),
                fetch_list=fetch_targets,
                return_numpy=True)
            for i, val in enumerate(data):
                class3_label, class2_label = utils.get_predict_label(
                    pred[0][i, 1])
                true_label = val[1]
                if class2_label == true_label:
                    class2_acc += 1
                if class3_label == true_label:
                    class3_acc += 1
                if true_label == 1.0:
                    neu_count += 1

            total_count += len(data)

        class2_acc = class2_acc / (total_count - neu_count)
        class3_acc = class3_acc / total_count
        print("[test info] model_path: %s, class2_acc: %f, class3_acc: %f" %
              (model_path, class2_acc, class3_acc))


def infer_net(test_reader, use_gpu, model_path=None):
    """
    Inference function
    """
    if model_path is None:
        print(str(model_path) + "can not be found")
        return
    # set place, executor
    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # load the saved model
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(model_path, exe)

        for data in test_reader():
            # infer a batch
            pred = exe.run(
                inference_program,
                feed=utils.data2tensor(data, place),
                fetch_list=fetch_targets,
                return_numpy=True)
            for i, val in enumerate(data):
                class3_label, class2_label = utils.get_predict_label(
                    pred[0][i, 1])
                pos_prob = pred[0][i, 1]
                neg_prob = 1 - pos_prob
                print("predict label: %d, pos_prob: %f, neg_prob: %f" %
                      (class3_label, pos_prob, neg_prob))


def main(args):

    # train mode
    if args.mode == "train":
        # prepare_data to get word_dict, train_reader
        word_dict, train_reader = utils.prepare_data(args.train_data_path,
                                                     args.word_dict_path,
                                                     args.batch_size, args.mode)

        train_net(train_reader, word_dict, args.model_type, args.use_gpu,
                  args.is_parallel, args.model_path, args.lr, args.batch_size,
                  args.num_passes)

    # train mode
    if args.mode == "finetune":
        # prepare_data to get word_dict, train_reader
        word_dict, train_reader = utils.prepare_data(args.train_data_path,
                                                     args.word_dict_path,
                                                     args.batch_size, args.mode)

        retrain_net(train_reader, word_dict, args.model_type, args.use_gpu,
                    args.is_parallel, args.model_path, args.lr, args.batch_size,
                    args.num_passes)
    # eval mode
    elif args.mode == "eval":
        # prepare_data to get word_dict, test_reader
        word_dict, test_reader = utils.prepare_data(args.test_data_path,
                                                    args.word_dict_path,
                                                    args.batch_size, args.mode)
        eval_net(test_reader, args.use_gpu, args.model_path)

    # infer mode
    elif args.mode == "infer":
        # prepare_data to get word_dict, test_reader
        word_dict, test_reader = utils.prepare_data(args.test_data_path,
                                                    args.word_dict_path,
                                                    args.batch_size, args.mode)
        infer_net(test_reader, args.use_gpu, args.model_path)


if __name__ == "__main__":
    args = parse_args()
    main(args)