README_en.md 2.2 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
# mobilenet_v2_imagenet

|Module Name|mobilenet_v2_imagenet|
| :--- | :---: |
|Category|image classification|
|Network|Mobilenet_v2|
|Dataset|ImageNet-2012|
|Fine-tuning supported or not|No|
|Module Size|15MB|
|Latest update date|-|
|Data indicators|-|


## I.Basic Information



- ### Module Introduction

  - MobileNet V2是Mark Sandler, Andrew Howard等人在2018年提出的一个图像分类模型,该系列模型(MobileNet)是为移动和嵌入式设备提出的高效模型,在模型Parameters较少的情况下仍然保持了较高的分类准确率.该PaddleHub Module基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测.

## II.Installation

- ### 1、Environmental Dependence  

  - paddlepaddle >= 1.4.0  

  - paddlehub >= 1.0.0  | [How to install PaddleHub]()


- ### 2、Installation

  - ```shell
    $ hub install mobilenet_v2_imagenet
    ```
  - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]()

## III.Module API Prediction

- ### 1、Command line Prediction

  - ```shell
    $ hub run mobilenet_v2_imagenet --input_path "/PATH/TO/IMAGE"
    ```
  - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst)

- ### 2、预测Prediction Code Example

  - ```python
    import paddlehub as hub
    import cv2

    classifier = hub.Module(name="mobilenet_v2_imagenet")
    test_img_path = "/PATH/TO/IMAGE"
    input_dict = {"image": [test_img_path]}
    result = classifier.classification(data=input_dict)
    ```

- ### 3、API

  - ```python
    def classification(data)
    ```
    - classification API.
    - **Parameters**
      - data (dict): key is "image", value is a list of image paths

    - **Return**
      - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability





## IV.Release Note

* 1.0.0

  First release

* 1.0.1

  Fix the problem of encoding in python2

  - ```shell
    $ hub install mobilenet_v2_imagenet==1.0.1
    ```