module.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import Union, List, Tuple

import paddle
from paddle import nn
import paddle.nn.functional as F
import numpy as np
from paddlehub.module.module import moduleinfo
import paddlehub.vision.segmentation_transforms as T
from paddlehub.module.cv_module import ImageSegmentationModule
from paddleseg.utils import utils
from paddleseg.models import layers

from ginet_resnet101vd_cityscapes.resnet import ResNet101_vd


@moduleinfo(
    name="ginet_resnet101vd_cityscapes",
    type="CV/semantic_segmentation",
    author="paddlepaddle",
    author_email="",
    summary="GINetResnet101 is a segmentation model.",
    version="1.0.0",
    meta=ImageSegmentationModule)
class GINetResNet101(nn.Layer):
    """
    The GINetResNet101 implementation based on PaddlePaddle.
    The original article refers to
    Wu, Tianyi, Yu Lu, Yu Zhu, Chuang Zhang, Ming Wu, Zhanyu Ma, and Guodong Guo. "GINet: Graph interaction network for scene parsing." In European Conference on Computer Vision, pp. 34-51. Springer, Cham, 2020.
    (https://arxiv.org/pdf/2009.06160).
    Args:
        num_classes (int): The unique number of target classes.
        backbone_indices (tuple, optional): Values in the tuple indicate the indices of output of backbone.
        enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss.
            If true, auxiliary loss will be added after LearningToDownsample module. Default: False.
        align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
            is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.. Default: False.
        jpu (bool, optional)): whether to use jpu unit in the base forward. Default:True.
        pretrained (str, optional): The path or url of pretrained model. Default: None.
    """

    def __init__(self,
                 num_classes: int = 19,
                 backbone_indices: Tuple[int]=(0, 1, 2, 3),
                 enable_auxiliary_loss: bool = True,
                 align_corners: bool = True,
                 jpu: bool = True,
                 pretrained: str = None):
        super(GINetResNet101, self).__init__()
        self.nclass = num_classes
        self.aux = enable_auxiliary_loss
        self.jpu = jpu

        self.backbone = ResNet101_vd()
        self.backbone_indices = backbone_indices
        self.align_corners = align_corners
        self.transforms = T.Compose([T.Normalize()])

        self.jpu = layers.JPU([512, 1024, 2048], width=512) if jpu else None
        self.head = GIHead(in_channels=2048, nclass=num_classes)

        if self.aux:
            self.auxlayer = layers.AuxLayer(
                1024, 1024 // 4, num_classes, bias_attr=False)

        if pretrained is not None:
            model_dict = paddle.load(pretrained)
            self.set_dict(model_dict)
            print("load custom parameters success")

        else:
            checkpoint = os.path.join(self.directory, 'model.pdparams')
            model_dict = paddle.load(checkpoint)
            self.set_dict(model_dict)
            print("load pretrained parameters success")

    def transform(self, img: Union[np.ndarray, str]) -> Union[np.ndarray, str]:
        return self.transforms(img)

    def base_forward(self, x: paddle.Tensor) -> List[paddle.Tensor]:
        feat_list = self.backbone(x)
        c1, c2, c3, c4 = [feat_list[i] for i in self.backbone_indices]

        if self.jpu:
            return self.jpu(c1, c2, c3, c4)
        else:
            return c1, c2, c3, c4

    def forward(self, x: paddle.Tensor) -> List[paddle.Tensor]:
        _, _, h, w = x.shape
        _, _, c3, c4 = self.base_forward(x)

        logit_list = []
        x, _ = self.head(c4)
        logit_list.append(x)

        if self.aux:
            auxout = self.auxlayer(c3)

            logit_list.append(auxout)

        return [
            F.interpolate(
                logit, (h, w),
                mode='bilinear',
                align_corners=self.align_corners) for logit in logit_list
        ]


class GIHead(nn.Layer):
    """The Graph Interaction Network head."""

    def __init__(self, in_channels: int, nclass: int):
        super().__init__()
        self.nclass = nclass
        inter_channels = in_channels // 4
        self.inp = paddle.zeros(shape=(nclass, 300), dtype='float32')
        self.inp = paddle.create_parameter(
            shape=self.inp.shape,
            dtype=str(self.inp.numpy().dtype),
            default_initializer=paddle.nn.initializer.Assign(self.inp))

        self.fc1 = nn.Sequential(
            nn.Linear(300, 128), nn.BatchNorm1D(128), nn.ReLU())
        self.fc2 = nn.Sequential(
            nn.Linear(128, 256), nn.BatchNorm1D(256), nn.ReLU())
        self.conv5 = layers.ConvBNReLU(
            in_channels,
            inter_channels,
            3,
            padding=1,
            bias_attr=False,
            stride=1)

        self.gloru = GlobalReasonUnit(
            in_channels=inter_channels,
            num_state=256,
            num_node=84,
            nclass=nclass)
        self.conv6 = nn.Sequential(
            nn.Dropout(0.1), nn.Conv2D(inter_channels, nclass, 1))

    def forward(self, x: paddle.Tensor) -> paddle.Tensor:
        B, C, H, W = x.shape
        inp = self.inp.detach()

        inp = self.fc1(inp)
        inp = self.fc2(inp).unsqueeze(axis=0).transpose((0, 2, 1))\
                           .expand((B, 256, self.nclass))

        out = self.conv5(x)

        out, se_out = self.gloru(out, inp)
        out = self.conv6(out)
        return out, se_out


class GlobalReasonUnit(nn.Layer):
    """
        The original paper refers to:
            Chen, Yunpeng, et al. "Graph-Based Global Reasoning Networks" (https://arxiv.org/abs/1811.12814)
    """

    def __init__(self, in_channels: int, num_state: int = 256, num_node: int = 84, nclass: int = 59):
        super().__init__()
        self.num_state = num_state
        self.conv_theta = nn.Conv2D(
            in_channels, num_node, kernel_size=1, stride=1, padding=0)
        self.conv_phi = nn.Conv2D(
            in_channels, num_state, kernel_size=1, stride=1, padding=0)
        self.graph = GraphLayer(num_state, num_node, nclass)
        self.extend_dim = nn.Conv2D(
            num_state, in_channels, kernel_size=1, bias_attr=False)

        self.bn = layers.SyncBatchNorm(in_channels)

    def forward(self, x: paddle.Tensor, inp: paddle.Tensor) -> paddle.Tensor:
        B = self.conv_theta(x)
        sizeB = B.shape
        B = B.reshape((sizeB[0], sizeB[1], -1))

        sizex = x.shape
        x_reduce = self.conv_phi(x)
        x_reduce = x_reduce.reshape((sizex[0], -1, sizex[2] * sizex[3]))\
                           .transpose((0, 2, 1))

        V = paddle.bmm(B, x_reduce).transpose((0, 2, 1))
        V = paddle.divide(
            V, paddle.to_tensor([sizex[2] * sizex[3]], dtype='float32'))

        class_node, new_V = self.graph(inp, V)
        D = B.reshape((sizeB[0], -1, sizeB[2] * sizeB[3])).transpose((0, 2, 1))
        Y = paddle.bmm(D, new_V.transpose((0, 2, 1)))
        Y = Y.transpose((0, 2, 1)).reshape((sizex[0], self.num_state, \
                                            sizex[2], -1))
        Y = self.extend_dim(Y)
        Y = self.bn(Y)
        out = Y + x

        return out, class_node


class GraphLayer(nn.Layer):
    def __init__(self, num_state: int, num_node: int, num_class: int):
        super().__init__()
        self.vis_gcn = GCN(num_state, num_node)
        self.word_gcn = GCN(num_state, num_class)
        self.transfer = GraphTransfer(num_state)
        self.gamma_vis = paddle.zeros([num_node])
        self.gamma_word = paddle.zeros([num_class])
        self.gamma_vis = paddle.create_parameter(
            shape=self.gamma_vis.shape,
            dtype=str(self.gamma_vis.numpy().dtype),
            default_initializer=paddle.nn.initializer.Assign(self.gamma_vis))
        self.gamma_word = paddle.create_parameter(
            shape=self.gamma_word.shape,
            dtype=str(self.gamma_word.numpy().dtype),
            default_initializer=paddle.nn.initializer.Assign(self.gamma_word))

    def forward(self, inp: paddle.Tensor, vis_node: paddle.Tensor) -> List[paddle.Tensor]:
        inp = self.word_gcn(inp)
        new_V = self.vis_gcn(vis_node)
        class_node, vis_node = self.transfer(inp, new_V)

        class_node = self.gamma_word * inp + class_node
        new_V = self.gamma_vis * vis_node + new_V
        return class_node, new_V


class GCN(nn.Layer):
    def __init__(self, num_state: int = 128, num_node: int = 64, bias=False):
        super().__init__()
        self.conv1 = nn.Conv1D(
            num_node,
            num_node,
            kernel_size=1,
            padding=0,
            stride=1,
            groups=1,
        )
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv1D(
            num_state,
            num_state,
            kernel_size=1,
            padding=0,
            stride=1,
            groups=1,
            bias_attr=bias)

    def forward(self, x: paddle.Tensor) -> paddle.Tensor:
        h = self.conv1(x.transpose((0, 2, 1))).transpose((0, 2, 1))
        h = h + x
        h = self.relu(h)
        h = self.conv2(h)
        return h


class GraphTransfer(nn.Layer):
    """Transfer vis graph to class node, transfer class node to vis feature"""

    def __init__(self, in_dim: int):
        super().__init__()
        self.channle_in = in_dim
        self.query_conv = nn.Conv1D(
            in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1)
        self.key_conv = nn.Conv1D(
            in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1)
        self.value_conv_vis = nn.Conv1D(
            in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.value_conv_word = nn.Conv1D(
            in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.softmax_vis = nn.Softmax(axis=-1)
        self.softmax_word = nn.Softmax(axis=-2)

    def forward(self, word: paddle.Tensor, vis_node: paddle.Tensor) -> List[paddle.Tensor]:
        m_batchsize, C, Nc = word.shape
        m_batchsize, C, Nn = vis_node.shape

        proj_query = self.query_conv(word).reshape((m_batchsize, -1, Nc))\
                                          .transpose((0, 2, 1))
        proj_key = self.key_conv(vis_node).reshape((m_batchsize, -1, Nn))

        energy = paddle.bmm(proj_query, proj_key)
        attention_vis = self.softmax_vis(energy).transpose((0, 2, 1))
        attention_word = self.softmax_word(energy)
        proj_value_vis = self.value_conv_vis(vis_node).reshape((m_batchsize, -1,
                                                                Nn))
        proj_value_word = self.value_conv_word(word).reshape((m_batchsize, -1,
                                                              Nc))

        class_out = paddle.bmm(proj_value_vis, attention_vis)
        node_out = paddle.bmm(proj_value_word, attention_word)
        return class_out, node_out