sequence_label_dygraph.py 5.3 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#coding:utf-8
import argparse
import os

import numpy as np
import paddlehub as hub
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.optimizer import AdamOptimizer
from paddlehub.finetune.evaluate import chunk_eval, calculate_f1

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch",          type=int,               default=1,                                  help="Number of epoches for fine-tuning.")
parser.add_argument("--batch_size",         type=int,               default=16,                                 help="Total examples' number in batch for training.")
parser.add_argument("--log_interval",       type=int,               default=10,                                 help="log interval.")
parser.add_argument("--save_interval",      type=int,               default=10,                                 help="save interval.")
parser.add_argument("--checkpoint_dir",     type=str,               default="paddlehub_finetune_ckpt_dygraph",  help="Path to save log data.")
parser.add_argument("--max_seq_len",        type=int,               default=512,                                help="Number of words of the longest seqence.")
# yapf: enable.


K
kinghuin 已提交
24
class TransformerSeqLabeling(fluid.dygraph.Layer):
W
wuzewu 已提交
25
    def __init__(self, num_classes, transformer):
K
kinghuin 已提交
26
        super(TransformerSeqLabeling, self).__init__()
W
wuzewu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
        self.num_classes = num_classes
        self.transformer = transformer
        self.fc = Linear(input_dim=768, output_dim=num_classes)

    def forward(self, input_ids, position_ids, segment_ids, input_mask):
        result = self.transformer(input_ids, position_ids, segment_ids,
                                  input_mask)
        pred = self.fc(result['sequence_output'])
        ret_infers = fluid.layers.reshape(
            x=fluid.layers.argmax(pred, axis=2), shape=[-1, 1])
        pred = fluid.layers.reshape(pred, shape=[-1, self.num_classes])
        return fluid.layers.softmax(pred), ret_infers


def finetune(args):
K
kinghuin 已提交
42 43 44 45 46 47
    module = hub.Module(name="ernie", max_seq_len=args.max_seq_len)
    # Use the appropriate tokenizer to preprocess the data set
    tokenizer = hub.BertTokenizer(vocab_file=module.get_vocab_path())
    dataset = hub.dataset.MSRA_NER(
        tokenizer=tokenizer, max_seq_len=args.max_seq_len)

W
wuzewu 已提交
48
    with fluid.dygraph.guard():
K
kinghuin 已提交
49 50
        ts = TransformerSeqLabeling(
            num_classes=dataset.num_labels, transformer=module)
W
wuzewu 已提交
51 52 53 54 55 56 57 58 59
        adam = AdamOptimizer(learning_rate=1e-5, parameter_list=ts.parameters())
        state_dict_path = os.path.join(args.checkpoint_dir,
                                       'dygraph_state_dict')
        if os.path.exists(state_dict_path + '.pdparams'):
            state_dict, _ = fluid.load_dygraph(state_dict_path)
            ts.load_dict(state_dict)

        loss_sum = total_infer = total_label = total_correct = cnt = 0
        for epoch in range(args.num_epoch):
K
kinghuin 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
            for batch_id, data in enumerate(
                    dataset.batch_records_generator(
                        phase="train",
                        batch_size=args.batch_size,
                        shuffle=True,
                        pad_to_batch_max_seq_len=False)):
                batch_size = len(data["input_ids"])
                input_ids = np.array(data["input_ids"]).astype(
                    np.int64).reshape([batch_size, -1, 1])
                position_ids = np.array(data["position_ids"]).astype(
                    np.int64).reshape([batch_size, -1, 1])
                segment_ids = np.array(data["segment_ids"]).astype(
                    np.int64).reshape([batch_size, -1, 1])
                input_mask = np.array(data["input_mask"]).astype(
                    np.float32).reshape([batch_size, -1, 1])
                labels = np.array(data["label"]).astype(np.int64).reshape(-1, 1)
                seq_len = np.array(data["seq_len"]).astype(np.int64).reshape(
                    -1, 1)
W
wuzewu 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
                pred, ret_infers = ts(input_ids, position_ids, segment_ids,
                                      input_mask)

                loss = fluid.layers.cross_entropy(pred, to_variable(labels))
                avg_loss = fluid.layers.mean(loss)
                avg_loss.backward()
                adam.minimize(avg_loss)

                loss_sum += avg_loss.numpy() * labels.shape[0]
                label_num, infer_num, correct_num = chunk_eval(
                    labels, ret_infers.numpy(), seq_len, dataset.num_labels, 1)
                cnt += labels.shape[0]

                total_infer += infer_num
                total_label += label_num
                total_correct += correct_num

                if batch_id % args.log_interval == 0:
                    precision, recall, f1 = calculate_f1(
                        total_label, total_infer, total_correct)
                    print('epoch {}: loss {}, f1 {} recall {} precision {}'.
                          format(epoch, loss_sum / cnt, f1, recall, precision))
                    loss_sum = total_infer = total_label = total_correct = cnt = 0

                if batch_id % args.save_interval == 0:
                    state_dict = ts.state_dict()
                    fluid.save_dygraph(state_dict, state_dict_path)


if __name__ == "__main__":
    args = parser.parse_args()
    finetune(args)