module.py 7.3 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
jm_12138's avatar
jm_12138 已提交
14 15
from __future__ import absolute_import
from __future__ import division
S
Steffy-zxf 已提交
16

jm_12138's avatar
jm_12138 已提交
17 18
import argparse
import ast
S
Steffy-zxf 已提交
19
import os
H
haoyuying 已提交
20

jm_12138's avatar
jm_12138 已提交
21 22 23
import numpy as np
from paddle.inference import Config
from paddle.inference import create_predictor
H
haoyuying 已提交
24

jm_12138's avatar
jm_12138 已提交
25 26 27 28 29 30
from .data_feed import reader
from .processor import base64_to_cv2
from .processor import postprocess
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
H
haoyuying 已提交
31 32


jm_12138's avatar
jm_12138 已提交
33 34 35 36 37 38 39
@moduleinfo(name="efficientnetb5_imagenet",
            type="CV/image_classification",
            author="paddlepaddle",
            author_email="paddle-dev@baidu.com",
            summary="EfficientNetB5 is a image classfication model, this module is trained with imagenet datasets.",
            version="1.2.0")
class EfficientNetB5ImageNet:
H
haoyuying 已提交
40

jm_12138's avatar
jm_12138 已提交
41 42 43 44 45 46 47
    def __init__(self):
        self.default_pretrained_model_path = os.path.join(self.directory, "efficientnetb5_imagenet_infer_model",
                                                          "model")
        label_file = os.path.join(self.directory, "label_list.txt")
        with open(label_file, 'r', encoding='utf-8') as file:
            self.label_list = file.read().split("\n")[:-1]
        self._set_config()
H
haoyuying 已提交
48

jm_12138's avatar
jm_12138 已提交
49 50
    def get_expected_image_width(self):
        return 224
W
wuzewu 已提交
51

jm_12138's avatar
jm_12138 已提交
52 53
    def get_expected_image_height(self):
        return 224
H
haoyuying 已提交
54

jm_12138's avatar
jm_12138 已提交
55 56 57
    def get_pretrained_images_mean(self):
        im_mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3)
        return im_mean
H
haoyuying 已提交
58

jm_12138's avatar
jm_12138 已提交
59 60 61
    def get_pretrained_images_std(self):
        im_std = np.array([0.229, 0.224, 0.225]).reshape(1, 3)
        return im_std
H
haoyuying 已提交
62

jm_12138's avatar
jm_12138 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    def _set_config(self):
        """
        predictor config setting
        """
        model = self.default_pretrained_model_path + '.pdmodel'
        params = self.default_pretrained_model_path + '.pdiparams'
        cpu_config = Config(model, params)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        self.cpu_predictor = create_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = Config(model, params)
            gpu_config.disable_glog_info()
            gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
            self.gpu_predictor = create_predictor(gpu_config)

    def classification(self, images=None, paths=None, batch_size=1, use_gpu=False, top_k=1):
        """
        API for image classification.
H
haoyuying 已提交
89

jm_12138's avatar
jm_12138 已提交
90 91 92 93 94 95
        Args:
            images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR.
            paths (list[str]): The paths of images.
            batch_size (int): batch size.
            use_gpu (bool): Whether to use gpu.
            top_k (int): Return top k results.
H
haoyuying 已提交
96

jm_12138's avatar
jm_12138 已提交
97 98
        Returns:
            res (list[dict]): The classfication results.
S
Steffy-zxf 已提交
99
        """
jm_12138's avatar
jm_12138 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
                )

        all_data = list()
        for yield_data in reader(images, paths):
            all_data.append(yield_data)

        total_num = len(all_data)
        loop_num = int(np.ceil(total_num / batch_size))

        res = list()
        for iter_id in range(loop_num):
            batch_data = list()
            handle_id = iter_id * batch_size
            for image_id in range(batch_size):
                try:
                    batch_data.append(all_data[handle_id + image_id])
                except:
                    pass
            # feed batch image
            batch_image = np.array([data['image'] for data in batch_data])

            predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            input_handle.copy_from_cpu(batch_image.copy())
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])

            out = postprocess(data_out=output_handle.copy_to_cpu(), label_list=self.label_list, top_k=top_k)
            res += out
        return res

    @serving
    def serving_method(self, images, **kwargs):
S
Steffy-zxf 已提交
142
        """
jm_12138's avatar
jm_12138 已提交
143
        Run as a service.
S
Steffy-zxf 已提交
144
        """
jm_12138's avatar
jm_12138 已提交
145 146 147
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.classify(images=images_decode, **kwargs)
        return results
S
Steffy-zxf 已提交
148

jm_12138's avatar
jm_12138 已提交
149 150
    @runnable
    def run_cmd(self, argvs):
S
Steffy-zxf 已提交
151
        """
jm_12138's avatar
jm_12138 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
                                              prog='hub run {}'.format(self.name),
                                              usage='%(prog)s',
                                              add_help=True)
        self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
        self.arg_config_group = self.parser.add_argument_group(
            title="Config options", description="Run configuration for controlling module behavior, not required.")
        self.add_module_config_arg()
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
        results = self.classify(paths=[args.input_path], batch_size=args.batch_size, use_gpu=args.use_gpu)
        return results

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument('--use_gpu',
                                           type=ast.literal_eval,
                                           default=False,
                                           help="whether use GPU or not.")
        self.arg_config_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
        self.arg_config_group.add_argument('--top_k', type=ast.literal_eval, default=1, help="Return top k results.")

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
        self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")


if __name__ == '__main__':
    b5 = EfficientNetB5ImageNet()
    b5.context()
    import cv2
    test_image = [cv2.imread('dog.jpeg')]
    res = b5.classification(images=test_image)
    print(res)
    res = b5.classification(paths=['dog.jpeg'])
    print(res)
    res = b5.classification(images=test_image)
    print(res)
    res = b5.classify(images=test_image)
    print(res)