README_en.md 2.1 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# densenet121_imagenet

|Module Name|densenet121_imagenet|
| :--- | :---: |
|Category|image classification|
|Network|DenseNet|
|Dataset|ImageNet-2012|
|Fine-tuning supported or not|No|
|Module Size|34MB|
|Latest update date|-|
|Data indicators|-|


## I.Basic Information



- ### Module Introduction

C
chenjian 已提交
20
  - DenseNet is the model in CVPR2017 best paper. Every layer outputs its result as input for the layer after it, and forms the dense connection topology. The dense connection ease the probblem of vanishing gradient and improve the information flow. This module is based on DenseNet121, trained on ImageNet-2012, and can predict an image of size 224*224*3.  
C
chenjian 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

## II.Installation

- ### 1、Environmental Dependence  

  - paddlepaddle >= 1.4.0  

  - paddlehub >= 1.0.0  | [How to install PaddleHub]()


- ### 2、Installation

  - ```shell
    $ hub install densenet121_imagenet
    ```
  - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]()

## III.Module API Prediction

- ### 1、Command line Prediction

  - ```shell
    $ hub run densenet121_imagenet --input_path "/PATH/TO/IMAGE"
    ```
  - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst)

- ### 2、预测Prediction Code Example

  - ```python
    import paddlehub as hub
    import cv2

    classifier = hub.Module(name="densenet121_imagenet")
    test_img_path = "/PATH/TO/IMAGE"
    input_dict = {"image": [test_img_path]}
    result = classifier.classification(data=input_dict)
    ```

- ### 3、API

  - ```python
    def classification(data)
    ```
    - classification API.
    - **Parameters**
      - data (dict): key is "image", value is a list of image paths

    - **Return**
      - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability





## IV.Release Note

* 1.0.0

  First release

  - ```shell
    $ hub install densenet121_imagenet==1.0.0
    ```