release.md 12.7 KB
Newer Older
1 2
# 更新历史

W
wuzewu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
## `v2.1.0`

### 【1、版本迭代】

 - 模型支持:新增基于VOC数据集的高精度语义分割模型2个,语音分类模型3个。
 - 迁移学习能力升级:新增图像语义分割、文本语义匹配、语音分类等相关任务的Fine-Tune能力以及相关任务数据集。

### 【2、部署能力重要升级】

 - 完善部署能力:新增ONNX和PaddleInference等模型格式的导出功能。
 - **重要开源生态合作**:新增[BentoML](https://github.com/bentoml/BentoML) 云原生服务化部署能力,可以支持统一的多框架模型管理和模型部署的工作流,[详细教程](https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.1/demo/serving/BentoML),更多内容可以参考BentoML 最新 v0.12.1 [Releasenote](https://github.com/bentoml/BentoML/releases/tag/v0.12.1)
   (感谢@ [parano](https://github.com/parano) @[cqvu](https://github.com/cqvu) @[deehrlic](https://github.com/deehrlic))的贡献与支持

### 【3、Bug fixes】

 - [#7da1230](https://github.com/PaddlePaddle/PaddleHub/commit/7da12302dd77e3d739da72821d41715ad8a7c79c) 修复了模型未记录评估指标时无法恢复训练的问题。
 - [#b0b3144](https://github.com/PaddlePaddle/PaddleHub/commit/b0b3144eff34e47cac8fc450c8b7cb6c557f9b84) 修复了评估过程出现异常时线程没有正常退出的问题。
 - [#30aace4](https://github.com/PaddlePaddle/PaddleHub/commit/30aace46414bbeef02beb75b7128f48fada82150) 优化模型安装流程,提升易用性。

## `v2.0.0`

* 发布 2.0版本,全面迁移动态图编程模式,模型开发调试更加方便,finetune接口更加灵活易用。
* 视觉类任务迁移学习能力全面升级,支持图像分类、图像着色、风格迁移等多种任务。
* BERT、ERNIE、RoBERTa等Transformer类模型升级至动态图,支持文本分类、序列标注的Fine-Tune能力。
* 新增词向量模型61个,其中包含中文模型51个,英文模型10个。
* 优化服务化部署Serving能力,支持多卡预测、自动负载均衡,性能大幅度提升。
* 新增自动数据增强能力Auto Augment,能高效地搜索适合数据集的数据增强策略组合。

W
wuzewu 已提交
31 32 33 34 35
## `v2.0.0-beta1`

* BERT、ERNIE、RoBERTa等Transformer类模型升级至动态图,增加[文本分类](../../demo/text_classification)的Fine-Tune能力
* 修复部分已知问题

W
wuzewu 已提交
36
## `v2.0.0-beta0`
W
wuzewu 已提交
37

W
wuzewu 已提交
38 39
* 全面迁移动态图编程模式,模型开发调试更加方便,finetune接口更加灵活易用。
* 优化服务化部署Serving能力,支持多卡预测、自动负载均衡,性能大幅度提升。
D
Daniel Yang 已提交
40
* 视觉类迁移学习能力全面升级,支持[图像分类](../../demo/image_classification)[图像着色](../../demo/colorization)[风格迁移](../../demo/style_transfer)等多种视觉任务。
W
wuzewu 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

## `v1.8.1`

*[图像分割](https://www.paddlepaddle.org.cn/hublist?filter=en_category&value=ImageSegmentation)』新增轻量级人像分割模型Humanseg,支持移动端实时分割
* 增强文本匹配任务性能,使用[EMNLP2019-Sentence-BERT](https://arxiv.org/abs/1908.10084)作为文本匹配任务网络,可同时大幅提升准确率和预测速度。配套教程:[pointwise文本语义匹配](https://aistudio.baidu.com/aistudio/projectdetail/705526)[pairwise文本语义匹配](https://aistudio.baidu.com/aistudio/projectdetail/709472)
* 修复文本分类选择F1作为评价指标,运行错误

## `v1.8.0`

* 预训练模型丰富,一键完成更多
  *[文本生成](https://www.paddlepaddle.org.cn/hublist?filter=en_category&value=TextGeneration)』新增基于ERNIE-tiny和ERNIE-gen的对联和写诗生成模型,支持一键自动写诗和对对联。
  *[词法分析](https://www.paddlepaddle.org.cn/hublist?filter=en_category&value=LexicalAnalysis)』新增jieba的paddle模式切词模型,可一键完成中文分词、关键词抽取等功能。
  *[语义表示](https://www.paddlepaddle.org.cn/hublist?filter=en_category&value=SemanticModel)』新增基于网页、小说、新闻三类大规模文本数据的LDA主题模型及其语义相似度计算接口。
* Fine-tune API升级,提升灵活性并支持更多任务
   * 新增Tokenizer API,支持更加灵活的切词、切字模式和自定义切词工具拓展。
   * 新增[文本生成](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/text_generation)任务,支持Seq2Seq任务的Fine-tuning。
  * 新增文本匹配任务,支持[Pointwise](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/pointwise_text_matching)[Pairwise](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/pairwise_text_matching)两种文本匹配训练模式,更便捷完成语义匹配任务。

S
Steffy-zxf 已提交
59 60 61
## `v1.7.0`

* 丰富预训练模型,提升应用性
S
Steffy-zxf 已提交
62
  * 新增VENUS系列视觉预训练模型[yolov3_darknet53_venus](https://www.paddlepaddle.org.cn/hubdetail?name=yolov3_darknet53_venus&en_category=ObjectDetection)[faster_rcnn_resnet50_fpn_venus](https://www.paddlepaddle.org.cn/hubdetail?name=faster_rcnn_resnet50_fpn_venus&en_category=ObjectDetection),可大幅度提升图像分类和目标检测任务的Fine-tune效果
S
Steffy-zxf 已提交
63 64 65
  * 新增工业级短视频分类模型[videotag_tsn_lstm](https://paddlepaddle.org.cn/hubdetail?name=videotag_tsn_lstm&en_category=VideoClassification),支持3000类中文标签识别
  * 新增轻量级中文OCR模型[chinese_ocr_db_rcnn](https://www.paddlepaddle.org.cn/hubdetail?name=chinese_ocr_db_rcnn&en_category=TextRecognition)[chinese_text_detection_db](https://www.paddlepaddle.org.cn/hubdetail?name=chinese_text_detection_db&en_category=TextRecognition),支持一键快速OCR识别
  * 新增行人检测、车辆检测、动物识别、Object等工业级模型
S
Steffy-zxf 已提交
66

S
Steffy-zxf 已提交
67
* Fine-tune API升级
S
Steffy-zxf 已提交
68
  * 文本分类任务新增6个预置网络,包括CNN, BOW, LSTM, BiLSTM, DPCNN等
S
Steffy-zxf 已提交
69 70
  * 使用VisualDL可视化训练评估性能数据

S
Steffy-zxf 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
## `v1.6.2`

* 修复图像分类在windows下运行错误

## `v1.6.1`

* 修复windows下安装PaddleHub缺失config.json文件

## `v1.6.0`

* NLP Module全面升级,提升应用性和灵活性
  * lac、senta系列(bow、cnn、bilstm、gru、lstm)、simnet_bow、porn_detection系列(cnn、gru、lstm)升级高性能预测,性能提升高达50%
  * ERNIE、BERT、RoBERTa等Transformer类语义模型新增获取预训练embedding接口get_embedding,方便接入下游任务,提升应用性
  * 新增RoBERTa通过模型结构压缩得到的3层Transformer模型[rbt3](https://www.paddlepaddle.org.cn/hubdetail?name=rbt3&en_category=SemanticModel)[rbtl3](https://www.paddlepaddle.org.cn/hubdetail?name=rbtl3&en_category=SemanticModel)

* Task predict接口增加高性能预测模式accelerate_mode,性能提升高达90%

* PaddleHub Module创建流程开放,支持Fine-tune模型转化,全面提升应用性和灵活性
  * [预训练模型转化为PaddleHub Module教程](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/contribution/contri_pretrained_model.md)
  * [Fine-tune模型转化为PaddleHub Module教程](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/tutorial/finetuned_model_to_module.md)

* [PaddleHub Serving](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/tutorial/serving.md)优化启动方式,支持更加灵活的参数配置

S
Steffy-zxf 已提交
94 95 96
## `v1.5.2`

* 优化pyramidbox_lite_server_mask、pyramidbox_lite_mobile_mask模型的服务化部署性能
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

## `v1.5.1`

* 修复加载module缺少cache目录的问题

## `v1.5.0`

* 升级PaddleHub Serving,提升性能和易用性
   * 新增文本Embedding服务[Bert Service](./tutorial/bert_service.md), 轻松获取文本embedding;
      * 代码精短,易于使用。服务端/客户端一行命令即可获取文本embedding;  
      * 更高性能,更高效率。通过Paddle AnalysisPredictor API优化计算图,提升速度减小显存占用
      * 随"机"应变,灵活扩展。根据机器资源和实际需求可灵活增加服务端数量,支持多显卡多模型计算任务
   * 优化并发方式,多核环境中使用多线程并发提高整体QPS

* 优化PaddleHub迁移学习组网Task功能,提升易用性
   * 增加Hook机制,支持[修改Task内置方法](./tutorial/hook.md)
   * 增加colorlog,支持日志彩色显示
   * 改用save_inference_model接口保存模型,方便模型部署
   * 优化predict接口,增加return_result参数,方便用户直接获取预测结果

* 优化PaddleHub Dataset基类,加载[自定义数据](./tutorial/how_to_load_data.md)代码更少、更简单


## `v1.4.1`

* 修复利用Transformer类模型完成序列标注任务适配paddle1.6版本的问题
* Windows下兼容性提升为python >= 3.6

## `v1.4.0`

* 新增预训练模型ERNIE tiny
* 新增数据集:INEWS、BQ、DRCD、CMRC2018、THUCNEWS,支持ChineseGLUE(CLUE)V0 所有任务
* 修复module与PaddlePaddle版本兼容性问题
* 优化Hub Serving启动过程和模型加载流程,提高服务响应速度


## `v1.3.0`

* 新增PaddleHub Serving服务部署
  * 新增[hub serving](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub-Serving%E4%B8%80%E9%94%AE%E6%9C%8D%E5%8A%A1%E9%83%A8%E7%BD%B2)命令,支持一键启动Module预测服务部署
* 新增预训练模型:
  * roberta_wwm_ext_chinese_L-24_H-1024_A-16
  * roberta_wwm_ext_chinese_L-12_H-768_A-12
  * bert_wwm_ext_chinese_L-12_H-768_A-12
  * bert_wwm_chinese_L-12_H-768_A-12
* AutoDL Finetuner优化使用体验
  * 支持通过接口方式回传模型性能
  * 可视化效果优化,支持多trail效果显示

## `v1.2.1`

* 新增**超参优化Auto Fine-tune**,实现给定超参搜索空间,PaddleHub自动给出较佳的超参组合
  * 支持两种超参优化算法:HAZero和PSHE2
  * 支持两种评估方式:FullTrail和PopulationBased
* 新增Fine-tune**优化策略ULMFiT**,包括以下三种设置
  * Slanted triangular learning rates:学习率先线性增加后缓慢降低
  * Discriminative fine-tuning:将计算图划分为n段,不同的段设置不同学习率
  * Gradual unfreezing:根据计算图的拓扑结构逐层unfreezing
* 新增支持用户自定义PaddleHub配置,包括
  * 预训练模型管理服务器地址
  * 日志记录级别
* Fine-tune API升级,灵活性与易用性提升
  * 新增**阅读理解Fine-tune任务****回归Fine-tune任务**
  * 新增多指标评测
  * 优化predict接口
  * 可视化工具支持使用tensorboard


## `v1.1.2`

* PaddleHub支持修改预训练模型存放路径${HUB_HOME}


## `v1.1.1`

* PaddleHub支持离线运行
* 修复python2安装PaddleHub失败问题


## `v1.1.0`

* PaddleHub **新增预训练模型ERNIE 2.0**
  * 升级Reader, 支持自动传送数据给Ernie 1.0/2.0
  * 新增数据集GLUE(MRPC、QQP、SST-2、CoLA、QNLI、RTE、MNLI)


## `v1.0.1`

* 安装模型时自动选择与paddlepaddle版本适配的模型


## `v1.0.0`

* 全新发布PaddleHub官网,易用性全面提升
  * 新增网站  https://www.paddlepaddle.org.cn/hub  包含PaddlePaddle生态的预训练模型使用介绍
  * 迁移学习Demo接入AI Studio与AI Book,无需安装即可快速体验

* 新增29个预训练模型,覆盖文本、图像、视频三大领域;目前官方提供40个预训练模型
  * CV预训练模型:
    * 新增图像分类预训练模型11个:SE_ResNeXt, GoogleNet, ShuffleNet等
    * 新增目标检测模型Faster-RCNN和YOLOv3
    * 新增图像生成模型CycleGAN
    * 新增人脸检测模型Pyramidbox
    * 新增视频分类模型4个: TSN, TSM, StNet, Non-Local
  * NLP预训练模型
    * 新增语义模型ELMo
    * 新增情感分析模型5个: Senta-BOW, Senta-CNN, Senta-GRNN, , Senta-LSTM, EmoTect
    * 新增中文语义相似度分析模型SimNet
    * 升级LAC词法分析模型,新增词典干预功能,支持用户自定义分词
* Fine-tune API升级,灵活性与性能全面提升
  * 支持多卡并行、PyReader多线程IO,Fine-tune速度提升60%
  * 简化finetune、evaluate、predict等使用逻辑,提升易用性
  * 增加事件回调功能,方便用户快速实现自定义迁移学习任务
  * 新增多标签分类Fine-tune任务


## `v0.5.0`

正式发布PaddleHub预训练模型管理工具,旨在帮助用户更高效的管理模型并开展迁移学习的工作。

**预训练模型管理**: 通过hub命令行可完成PaddlePaddle生态的预训练模型下载、搜索、版本管理等功能。

**命令行一键使用**: 无需代码,通过命令行即可直接使用预训练模型进行预测,快速调研训练模型效果。目前版本支持以下模型:词法分析LAC;情感分析Senta;目标检测SSD;图像分类ResNet, MobileNet, NASNet等。

**迁移学习**: 提供了基于预训练模型的Fine-tune API,用户通过少量代码即可完成迁移学习,包括BERT/ERNIE文本分类、序列标注、图像分类迁移等。