test_face_landmark_localization.py 2.1 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import unittest

import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub

pic_dir = '../image_dataset/keypoint_detection'


class TestFaceLocate(unittest.TestCase):
    @classmethod
    def setUpClass(self):
        """Prepare the environment once before execution of all tests.\n"""
        self.face_locate = hub.Module(name="face_landmark_localization")

    @classmethod
    def tearDownClass(self):
        """clean up the environment after the execution of all tests.\n"""
        self.face_locate = None

    def setUp(self):
        "Call setUp() to prepare environment\n"
        self.test_prog = fluid.Program()

    def tearDown(self):
        "Call tearDown to restore environment.\n"
        self.test_prog = None

    def test_context(self):
        self.face_locate.context()

    def test_single_pic(self):
        with fluid.program_guard(self.test_prog):
            pics_path_list = [
                os.path.join(pic_dir, f) for f in os.listdir(pic_dir)
            ]
            for pic_path in pics_path_list:
                result = self.face_locate.keypoint_detection(
                    paths=[pic_path], use_gpu=True, visualization=True)
                print(result)

    def test_ndarray(self):
        with fluid.program_guard(self.test_prog):
            pics_path_list = [
                os.path.join(pic_dir, f) for f in os.listdir(pic_dir)
            ]
            pics_ndarray = list()
            for pic_path in pics_path_list:
                im = cv2.imread(pic_path)
                result = self.face_locate.keypoint_detection(
                    images=np.expand_dims(im, axis=0),
                    output_dir='ndarray_output',
                    use_gpu=True,
                    visualization=True)
                print(result)


if __name__ == "__main__":
    suite = unittest.TestSuite()
    suite.addTest(TestFaceLocate('test_single_pic'))
    suite.addTest(TestFaceLocate('test_ndarray'))
    runner = unittest.TextTestRunner(verbosity=2)
    runner.run(suite)