sampler.py 12.7 KB
Newer Older
S
SiMing Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
import os

import numpy as np
from tqdm import tqdm
from paddlehub.common.logger import logger

from lda_webpage.document import LDADoc, SLDADoc, Token, Sentence
from lda_webpage.vose_alias import VoseAlias
from lda_webpage.util import rand, rand_k


class Sampler(object):
    def __init__(self):
        pass

    def sample_doc(self, doc):
        """Sample LDA or SLDA topics for documents.
        """
        raise NotImplementedError


class MHSampler(Sampler):
    def __init__(self, model):
        super().__init__()
        self.__model = model
        self.__topic_indexes = None
        self.__alias_tables = None
        self.__prob_sum = None
        self.__beta_alias = VoseAlias()
        self.__beta_prior_sum = None
        self.__mh_steps = 2
        self.__construct_alias_table()

    def __construct_alias_table(self):
        """Construct alias table for all words.
        """
        logger.info("Construct alias table for alias sampling method.")
        vocab_size = self.__model.vocab_size()
        self.__topic_indexes = [[] for _ in range(vocab_size)]
        self.__alias_tables = [VoseAlias() for _ in range(vocab_size)]
        self.__prob_sum = np.zeros(vocab_size)

        # Construct each word's alias table (prior is not included).
        for i in tqdm(range(vocab_size)):
            dist = []
            prob_sum = 0
            for key in self.__model.word_topic(i):
                topic_id = key
                word_topic_count = self.__model.word_topic(i)[key]
                topic_sum = self.__model.topic_sum_value(topic_id)

                self.__topic_indexes[i].append(topic_id)
                q = word_topic_count / (topic_sum + self.__model.beta_sum())
                dist.append(q)
                prob_sum += q
            self.__prob_sum[i] = prob_sum
            if len(dist) > 0:
                dist = np.array(dist, dtype=np.float)
                self.__alias_tables[i].initialize(dist)

        # Build prior parameter beta's alias table.
        beta_dist = self.__model.beta() / (
            self.__model.topic_sum() + self.__model.beta_sum())
        self.__beta_prior_sum = np.sum(beta_dist)
        self.__beta_alias.initialize(beta_dist)

    def sample_doc(self, doc):
        if isinstance(doc, LDADoc) and not isinstance(doc, SLDADoc):
            for i in range(doc.size()):
                new_topic = self.__sample_token(doc, doc.token(i))
                doc.set_topic(i, new_topic)
        elif isinstance(doc, SLDADoc):
            for i in range(doc.size()):
                new_topic = self.__sample_sentence(doc, doc.sent(i))
                doc.set_topic(i, new_topic)

    def __sample_token(self, doc, token):
        new_topic = token.topic
        for i in range(self.__mh_steps):
            doc_proposed_topic = self.__doc_proposal(doc, token)
            new_topic = self.__word_proposal(doc, token, doc_proposed_topic)
        return new_topic

    def __sample_sentence(self, doc, sent):
        new_topic = sent.topic
        for i in range(self.__mh_steps):
            doc_proposed_topic = self.__doc_proposal(doc, sent)
            new_topic = self.__word_proposal(doc, sent, doc_proposed_topic)
        return new_topic

    def __doc_proposal(self, doc, token):
        if isinstance(doc, LDADoc) and isinstance(token, Token):
            old_topic = token.topic
            dart = rand() * (doc.size() + self.__model.alpha_sum())
            if dart < doc.size():
                token_index = int(dart)
                new_topic = doc.token(token_index).topic
            else:
                new_topic = rand_k(self.__model.num_topics())

            if new_topic != old_topic:
                proposal_old = self.__doc_proposal_distribution(doc, old_topic)
                proposal_new = self.__doc_proposal_distribution(doc, new_topic)
                proportion_old = self.__proportional_function(
                    doc, token, old_topic)
                proportion_new = self.__proportional_function(
                    doc, token, new_topic)
                transition_prob = float((proportion_new * proposal_old) /
                                        (proportion_old * proposal_new))
                rejection = rand()
                mask = -(rejection < transition_prob)
                return (new_topic & mask) | (old_topic & ~mask)

            return new_topic

        elif isinstance(doc, SLDADoc) and isinstance(token, Sentence):
            sent = token
            old_topic = sent.topic
            dart = rand() * (doc.size() + self.__model.alpha_sum())
            if dart < doc.size():
                token_index = int(dart)
                new_topic = doc.sent(token_index).topic
            else:
                new_topic = rand_k(self.__model.num_topics())

            if new_topic != old_topic:
                proportion_old = self.__proportional_function(
                    doc, sent, old_topic)
                proportion_new = self.__proportional_function(
                    doc, sent, new_topic)
                proposal_old = self.__doc_proposal_distribution(doc, old_topic)
                proposal_new = self.__doc_proposal_distribution(doc, new_topic)
                transition_prob = float((proportion_new * proposal_old) /
                                        (proportion_old * proposal_new))
                rejection = rand()
                mask = -(rejection < transition_prob)
                return (new_topic & mask) | (old_topic & ~mask)

            return new_topic

    def __word_proposal(self, doc, token, old_topic):
        if isinstance(doc, LDADoc) and isinstance(token, Token):
            new_topic = self.__propose(token.id)
            if new_topic != old_topic:
                proposal_old = self.__word_proposal_distribution(
                    token.id, old_topic)
                proposal_new = self.__word_proposal_distribution(
                    token.id, new_topic)
                proportion_old = self.__proportional_function(
                    doc, token, old_topic)
                proportion_new = self.__proportional_function(
                    doc, token, new_topic)
                transition_prob = float((proportion_new * proposal_old) /
                                        (proportion_old * proposal_new))
                rejection = rand()
                mask = -(rejection < transition_prob)
                return (new_topic & mask) | (old_topic & ~mask)
            return new_topic

        elif isinstance(doc, SLDADoc) and isinstance(token, Sentence):
            sent = token
            new_topic = old_topic
            for word_id in sent.tokens:
                new_topic = self.__propose(word_id)
                if new_topic != old_topic:
                    proportion_old = self.__proportional_function(
                        doc, sent, old_topic)
                    proportion_new = self.__proportional_function(
                        doc, sent, new_topic)
                    proposal_old = self.__word_proposal_distribution(
                        word_id, old_topic)
                    proposal_new = self.__word_proposal_distribution(
                        word_id, new_topic)
                    transition_prob = float((proportion_new * proposal_old) /
                                            (proportion_old * proposal_new))
                    rejection = rand()
                    mask = -(rejection < transition_prob)
                    new_topic = (new_topic & mask) | (old_topic & ~mask)
            return new_topic

    def __proportional_function(self, doc, token, new_topic):
        if isinstance(doc, LDADoc) and isinstance(token, Token):
            old_topic = token.topic
            dt_alpha = doc.topic_sum(new_topic) + self.__model.alpha()
            wt_beta = self.__model.word_topic_value(
                token.id, new_topic) + self.__model.beta()
            t_sum_beta_sum = self.__model.topic_sum_value(
                new_topic) + self.__model.beta_sum()
            if new_topic == old_topic and wt_beta > 1:
                if dt_alpha > 1:
                    dt_alpha -= 1
                wt_beta -= 1
                t_sum_beta_sum -= 1
            return dt_alpha * wt_beta / t_sum_beta_sum

        elif isinstance(doc, SLDADoc) and isinstance(token, Sentence):
            sent = token
            old_topic = sent.topic
            result = doc.topic_sum(new_topic) + self.__model.alpha()
            if new_topic == old_topic:
                result -= 1
            for word_id in sent.tokens:
                wt_beta = self.__model.word_topic_value(
                    word_id, new_topic) + self.__model.beta()
                t_sum_beta_sum = self.__model.topic_sum_value(
                    new_topic) + self.__model.beta_sum()
                if new_topic == old_topic and wt_beta > 1:
                    wt_beta -= 1
                    t_sum_beta_sum -= 1
                result *= wt_beta / t_sum_beta_sum
            return result
        else:
            logger.error("Wrong input argument type!")

    def __word_proposal_distribution(self, word_id, topic):
        wt_beta = self.__model.word_topic_value(word_id,
                                                topic) + self.__model.beta()
        t_sum_beta_sum = self.__model.topic_sum_value(
            topic) + self.__model.beta_sum()
        return wt_beta / t_sum_beta_sum

    def __doc_proposal_distribution(self, doc, topic):
        return doc.topic_sum(topic) + self.__model.alpha()

    def __propose(self, word_id):
        dart = rand() * (self.__prob_sum[word_id] + self.__beta_prior_sum)
        if dart < self.__prob_sum[word_id]:
            idx = self.__alias_tables[word_id].generate()
            topic = self.__topic_indexes[word_id][idx]
        else:
            topic = self.__beta_alias.generate()
        return topic


class GibbsSampler(Sampler):
    def __init__(self, model):
        super().__init__()
        self.__model = model

    def sample_doc(self, doc):
        if isinstance(doc, LDADoc) and not isinstance(doc, SLDADoc):
            for i in range(doc.size()):
                new_topic = self.__sample_token(doc, doc.token(i))
                doc.set_topic(i, new_topic)
        elif isinstance(doc, SLDADoc):
            for i in range(doc.size()):
                new_topic = self.__sample_sentence(doc, doc.sent(i))
                doc.set_topic(i, new_topic)

    def __sample_token(self, doc, token):
        old_topic = token.topic
        num_topics = self.__model.num_topics()
        accum_prob = np.zeros(num_topics)
        prob = np.zeros(num_topics)
        sum_ = 0
        for i in range(num_topics):
            dt_alpha = doc.topic_sum(i) + self.__model.alpha()
            wt_beta = self.__model.word_topic_value(token.id,
                                                    i) + self.__model.beta()
            t_sum_beta_sum = self.__model.topic_sum(i) + self.__model.beta_sum()
            if i == old_topic and wt_beta > 1:
                if dt_alpha > 1:
                    dt_alpha -= 1
                wt_beta -= 1
                t_sum_beta_sum -= 1
            prob[i] = dt_alpha * wt_beta / t_sum_beta_sum
            sum_ += prob[i]
            accum_prob[i] = prob[i] if i == 0 else accum_prob[i - 1] + prob[i]

        dart = rand() * sum_
        if dart <= accum_prob[0]:
            return 0
        for i in range(1, num_topics):
            if accum_prob[i - 1] < dart <= accum_prob[i]:
                return i
        return num_topics - 1

    def __sample_sentence(self, doc, sent):
        old_topic = sent.topic
        num_topics = self.__model.num_topics()
        accum_prob = np.zeros(num_topics)
        prob = np.zeros(num_topics)
        sum_ = 0
        for t in range(num_topics):
            dt_alpha = doc.topic_sum(t) + self.__model.alpha()
            t_sum_beta_sum = self.__model.topic_sum(t) + self.__model.beta_sum()
            if t == old_topic:
                if dt_alpha > 1:
                    dt_alpha -= 1
                if t_sum_beta_sum > 1:
                    t_sum_beta_sum -= 1
            prob[t] = dt_alpha
            for i in range(len(sent.tokens)):
                w = sent.tokens[i]
                wt_beta = self.__model.word_topic_value(
                    w, t) + self.__model.beta()
                if t == old_topic and wt_beta > 1:
                    wt_beta -= 1
                # Note: if the length of the sentence is too long, the probability will be
                # too small and the accuracy will be lost if there are too many multiply items
                prob[t] *= wt_beta / t_sum_beta_sum
            sum_ += prob[t]
            accum_prob[t] = prob[t] if t == 0 else accum_prob[t - 1] + prob[t]

        dart = rand() * sum
        if dart <= accum_prob[0]:
            return 0
        for t in range(1, num_topics):
            if accum_prob[t - 1] < dart <= accum_prob[t]:
                return t
        return num_topics - 1