module.py 8.1 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
# coding=utf-8
from __future__ import absolute_import
from __future__ import division

import ast
import argparse
import os

import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving

from ace2p.processor import get_palette, postprocess, base64_to_cv2, cv2_to_base64
from ace2p.data_feed import reader


@moduleinfo(
    name="ace2p",
    type="CV/semantic-segmentation",
    author="baidu-idl",
    author_email="",
    summary="ACE2P is an image segmentation model for human parsing solution.",
    version="1.1.0")
class ACE2P(hub.Module):
    def _initialize(self):
        self.default_pretrained_model_path = os.path.join(
            self.directory, "ace2p_human_parsing")
        # label list
        label_list_file = os.path.join(self.directory, 'label_list.txt')
        with open(label_list_file, "r") as file:
            content = file.read()
        self.label_list = content.split("\n")
        # palette used in postprocess
        self.palette = get_palette(len(self.label_list))
        self._set_config()

    def _set_config(self):
        """
        predictor config setting
        """
        cpu_config = AnalysisConfig(self.default_pretrained_model_path)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        self.cpu_predictor = create_paddle_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = AnalysisConfig(self.default_pretrained_model_path)
            gpu_config.disable_glog_info()
            gpu_config.enable_use_gpu(
                memory_pool_init_size_mb=1000, device_id=0)
            self.gpu_predictor = create_paddle_predictor(gpu_config)

    def segmentation(self,
                     images=None,
                     paths=None,
                     data=None,
                     batch_size=1,
                     use_gpu=False,
                     output_dir='ace2p_output',
                     visualization=False):
        """
        API for human parsing.

        Args:
            images (list[numpy.ndarray]): images data, shape of each is [H, W, C], color space is BGR.
            paths (list[str]): The paths of images.
            batch_size (int): batch size.
            use_gpu (bool): Whether to use gpu.
            output_dir (str): The path to store output images.
            visualization (bool): Whether to save output images or not.

        Returns:
            res (list[dict]): The result of human parsing and original path of images.
        """
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
            except:
                raise RuntimeError(
89
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
W
wuzewu 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
                )

        # compatibility with older versions
        if data and 'image' in data:
            if paths is None:
                paths = []
            paths += data['image']

        # get all data
        all_data = []
        scale = (473, 473)  # size of preprocessed image.
        rotation = 0  # rotation angle, used for obtaining affine matrix in preprocess.
        for yield_data in reader(images, paths, scale, rotation):
            all_data.append(yield_data)

        total_num = len(all_data)
        loop_num = int(np.ceil(total_num / batch_size))

        res = []
        for iter_id in range(loop_num):
            batch_data = list()
            handle_id = iter_id * batch_size
            for image_id in range(batch_size):
                try:
                    batch_data.append(all_data[handle_id + image_id])
                except:
                    pass
            # feed batch image
            batch_image = np.array([data['image'] for data in batch_data])
            batch_image = PaddleTensor(batch_image.astype('float32'))
            data_out = self.gpu_predictor.run([
                batch_image
            ]) if use_gpu else self.cpu_predictor.run([batch_image])
            # postprocess one by one
            for i in range(len(batch_data)):
                out = postprocess(
                    data_out=data_out[0].as_ndarray()[i],
                    org_im=batch_data[i]['org_im'],
                    org_im_path=batch_data[i]['org_im_path'],
                    image_info=batch_data[i]['image_info'],
                    output_dir=output_dir,
                    visualization=visualization,
                    palette=self.palette)
                res.append(out)
        return res

    def save_inference_model(self,
                             dirname,
                             model_filename=None,
                             params_filename=None,
                             combined=True):
        if combined:
            model_filename = "__model__" if not model_filename else model_filename
            params_filename = "__params__" if not params_filename else params_filename
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        program, feeded_var_names, target_vars = fluid.io.load_inference_model(
            dirname=self.default_pretrained_model_path, executor=exe)

        fluid.io.save_inference_model(
            dirname=dirname,
            main_program=program,
            executor=exe,
            feeded_var_names=feeded_var_names,
            target_vars=target_vars,
            model_filename=model_filename,
            params_filename=params_filename)

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.segmentation(images_decode, **kwargs)
        results = [{
            'data': cv2_to_base64(result['data'])
        } for result in results]
        return results

    @runnable
    def run_cmd(self, argvs):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)
        self.arg_input_group = self.parser.add_argument_group(
            title="Input options", description="Input data. Required")
        self.arg_config_group = self.parser.add_argument_group(
            title="Config options",
            description=
            "Run configuration for controlling module behavior, not required.")
        self.add_module_config_arg()
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
        results = self.segmentation(
            paths=[args.input_path],
            batch_size=args.batch_size,
            use_gpu=args.use_gpu,
            output_dir=args.output_dir,
            visualization=args.visualization)
        return results

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument(
            '--use_gpu',
            type=ast.literal_eval,
            default=False,
            help="whether use GPU or not")
        self.arg_config_group.add_argument(
            '--output_dir',
            type=str,
            default='ace2p_output',
            help="The directory to save output images.")
        self.arg_config_group.add_argument(
            '--visualization',
            type=ast.literal_eval,
            default=False,
            help="whether to save output as images.")
        self.arg_config_group.add_argument(
            '--batch_size',
            type=ast.literal_eval,
            default=1,
            help="batch size.")

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
        self.arg_input_group.add_argument(
            '--input_path', type=str, help="path to image.")