module.py 28.6 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
H
haoyuying 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
import math
import collections
import re
import copy

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule

GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum',
    'batch_norm_epsilon',
    'dropout_rate',
    'num_classes',
    'width_coefficient',
    'depth_coefficient',
    'depth_divisor',
    'min_depth',
    'drop_connect_rate',
])

BlockArgs = collections.namedtuple(
    'BlockArgs',
    ['kernel_size', 'num_repeat', 'input_filters', 'output_filters', 'expand_ratio', 'id_skip', 'stride', 'se_ratio'])

GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def efficientnet_params(model_name: str):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b3': (1.2, 1.4, 300, 0.3)
    }
    return params_dict[model_name]


def efficientnet(width_coefficient: float = None,
                 depth_coefficient: float = None,
                 dropout_rate: float = 0.2,
                 drop_connect_rate: float = 0.2):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(batch_norm_momentum=0.99,
                                 batch_norm_epsilon=1e-3,
                                 dropout_rate=dropout_rate,
                                 drop_connect_rate=drop_connect_rate,
                                 num_classes=1000,
                                 width_coefficient=width_coefficient,
                                 depth_coefficient=depth_coefficient,
                                 depth_divisor=8,
                                 min_depth=None)

    return blocks_args, global_params


def get_model_params(model_name: str, override_params: dict):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet'):
        w, d, _, p = efficientnet_params(model_name)
        blocks_args, global_params = efficientnet(width_coefficient=w, depth_coefficient=d, dropout_rate=p)
    else:
        raise NotImplementedError('model name is not pre-defined: %s' % model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


def round_filters(filters: int, global_params: dict):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats: int, global_params: dict):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


class BlockDecoder(object):
    """
    Block Decoder, straight from the official TensorFlow repository.
    """
    @staticmethod
    def _decode_block_string(block_string: str):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
        cond_1 = ('s' in options and len(options['s']) == 1)
        cond_2 = ((len(options['s']) == 2) and (options['s'][0] == options['s'][1]))
        assert (cond_1 or cond_2)

        return BlockArgs(kernel_size=int(options['k']),
                         num_repeat=int(options['r']),
                         input_filters=int(options['i']),
                         output_filters=int(options['o']),
                         expand_ratio=int(options['e']),
                         id_skip=('noskip' not in block_string),
                         se_ratio=float(options['se']) if 'se' in options else None,
                         stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            'r%d' % block.num_repeat,
            'k%d' % block.kernel_size,
            's%d%d' % (block.strides[0], block.strides[1]),
            'e%s' % block.expand_ratio,
            'i%d' % block.input_filters,
            'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list: list):
S
Steffy-zxf 已提交
173
        """
H
haoyuying 已提交
174
        Decode a list of string notations to specify blocks in the network.
S
Steffy-zxf 已提交
175

H
haoyuying 已提交
176 177 178
        string_list: list of strings, each string is a notation of block
        return
            list of BlockArgs namedtuples of block args
S
Steffy-zxf 已提交
179
        """
H
haoyuying 已提交
180 181 182 183 184 185 186 187
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args: list):
S
Steffy-zxf 已提交
188
        """
H
haoyuying 已提交
189
        Encodes a list of BlockArgs to a list of strings.
S
Steffy-zxf 已提交
190

H
haoyuying 已提交
191 192
        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
S
Steffy-zxf 已提交
193
        """
H
haoyuying 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


def initial_type(name: str, use_bias: bool = False):
    param_attr = ParamAttr(name=name + "_weights")
    if use_bias:
        bias_attr = ParamAttr(name=name + "_offset")
    else:
        bias_attr = False
    return param_attr, bias_attr


def init_batch_norm_layer(name: str = "batch_norm"):
    param_attr = ParamAttr(name=name + "_scale")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def init_fc_layer(name: str = "fc"):
    param_attr = ParamAttr(name=name + "_weights")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def cal_padding(img_size: int, stride: int, filter_size: int, dilation: int = 1):
    """Calculate padding size."""
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


inp_shape = {"b3": [300, 150, 150, 75, 38, 19, 19, 10]}


def _drop_connect(inputs: paddle.Tensor, prob: float, is_test: bool):
    """Drop input connection"""
    if is_test:
        return inputs
    keep_prob = 1.0 - prob
    inputs_shape = paddle.shape(inputs)
    random_tensor = keep_prob + paddle.rand(shape=[inputs_shape[0], 1, 1, 1])
    binary_tensor = paddle.floor(random_tensor)
    output = inputs / keep_prob * binary_tensor
    return output


class Conv2ds(nn.Layer):
    """Basic conv layer"""
    def __init__(self,
                 input_channels: int,
                 output_channels: int,
                 filter_size: int,
                 stride: int = 1,
                 padding: int = 0,
                 groups: int = None,
                 name: str = "conv2d",
                 act: str = None,
                 use_bias: bool = False,
                 padding_type: str = None,
                 model_name: str = None,
                 cur_stage: str = None):
        super(Conv2ds, self).__init__()
        assert act in [None, "swish", "sigmoid"]
        self.act = act

        param_attr, bias_attr = initial_type(name=name, use_bias=use_bias)

        def get_padding(filter_size, stride=1, dilation=1):
            padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
            return padding

        inps = 1 if model_name == None and cur_stage == None else inp_shape[model_name][cur_stage]
        self.need_crop = False
        if padding_type == "SAME":
            top_padding, bottom_padding = cal_padding(inps, stride, filter_size)
            left_padding, right_padding = cal_padding(inps, stride, filter_size)
            height_padding = bottom_padding
            width_padding = right_padding
            if top_padding != bottom_padding or left_padding != right_padding:
                height_padding = top_padding + stride
                width_padding = left_padding + stride
                self.need_crop = True
            padding = [height_padding, width_padding]
        elif padding_type == "VALID":
            height_padding = 0
            width_padding = 0
            padding = [height_padding, width_padding]
        elif padding_type == "DYNAMIC":
            padding = get_padding(filter_size, stride)
        else:
            padding = padding_type

        groups = 1 if groups is None else groups
        self._conv = Conv2d(input_channels,
                            output_channels,
                            filter_size,
                            groups=groups,
                            stride=stride,
                            padding=padding,
                            weight_attr=param_attr,
                            bias_attr=bias_attr)

    def forward(self, inputs: paddle.Tensor):
        x = self._conv(inputs)
        if self.act == "swish":
            x = F.swish(x)
        elif self.act == "sigmoid":
            x = F.sigmoid(x)

        if self.need_crop:
            x = x[:, :, 1:, 1:]
        return x


class ConvBNLayer(nn.Layer):
    """Basic conv bn layer."""
    def __init__(self,
                 input_channels: int,
                 filter_size: int,
                 output_channels: int,
                 stride: int = 1,
                 num_groups: int = 1,
                 padding_type: str = "SAME",
                 conv_act: str = None,
                 bn_act: str = "swish",
                 use_bn: bool = True,
                 use_bias: bool = False,
                 name: str = None,
                 conv_name: str = None,
                 bn_name: str = None,
                 model_name: str = None,
                 cur_stage: str = None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2ds(input_channels=input_channels,
                             output_channels=output_channels,
                             filter_size=filter_size,
                             stride=stride,
                             groups=num_groups,
                             act=conv_act,
                             padding_type=padding_type,
                             name=conv_name,
                             use_bias=use_bias,
                             model_name=model_name,
                             cur_stage=cur_stage)
        self.use_bn = use_bn
        if use_bn is True:
            bn_name = name + bn_name
            param_attr, bias_attr = init_batch_norm_layer(bn_name)

            self._bn = BatchNorm(num_channels=output_channels,
                                 act=bn_act,
                                 momentum=0.99,
                                 epsilon=0.001,
                                 moving_mean_name=bn_name + "_mean",
                                 moving_variance_name=bn_name + "_variance",
                                 param_attr=param_attr,
                                 bias_attr=bias_attr)

    def forward(self, inputs: paddle.Tensor):
        if self.use_bn:
            x = self._conv(inputs)
            x = self._bn(x)
            return x
        else:
            return self._conv(inputs)


class ExpandConvNorm(nn.Layer):
    """Expand conv norm layer."""
    def __init__(self,
                 input_channels: int,
                 block_args: dict,
                 padding_type: str,
                 name: str = None,
                 model_name: str = None,
                 cur_stage: str = None):
        super(ExpandConvNorm, self).__init__()

        self.oup = block_args.input_filters * block_args.expand_ratio
        self.expand_ratio = block_args.expand_ratio

        if self.expand_ratio != 1:
            self._conv = ConvBNLayer(input_channels,
                                     1,
                                     self.oup,
                                     bn_act=None,
                                     padding_type=padding_type,
                                     name=name,
                                     conv_name=name + "_expand_conv",
                                     bn_name="_bn0",
                                     model_name=model_name,
                                     cur_stage=cur_stage)

    def forward(self, inputs: paddle.Tensor):
        if self.expand_ratio != 1:
            return self._conv(inputs)
        else:
            return inputs


class DepthwiseConvNorm(nn.Layer):
    """Depthwise conv norm layer."""
    def __init__(self,
                 input_channels: int,
                 block_args: dict,
                 padding_type: str,
                 name: str = None,
                 model_name: str = None,
                 cur_stage: str = None):
        super(DepthwiseConvNorm, self).__init__()

        self.k = block_args.kernel_size
        self.s = block_args.stride
        if isinstance(self.s, list) or isinstance(self.s, tuple):
            self.s = self.s[0]
        oup = block_args.input_filters * block_args.expand_ratio

        self._conv = ConvBNLayer(input_channels,
                                 self.k,
                                 oup,
                                 self.s,
                                 num_groups=input_channels,
                                 bn_act=None,
                                 padding_type=padding_type,
                                 name=name,
                                 conv_name=name + "_depthwise_conv",
                                 bn_name="_bn1",
                                 model_name=model_name,
                                 cur_stage=cur_stage)

    def forward(self, inputs: paddle.Tensor):
        return self._conv(inputs)


class ProjectConvNorm(nn.Layer):
    """Projection conv bn layer."""
    def __init__(self,
                 input_channels: int,
                 block_args: dict,
                 padding_type: str,
                 name: str = None,
                 model_name: str = None,
                 cur_stage: str = None):
        super(ProjectConvNorm, self).__init__()

        final_oup = block_args.output_filters

        self._conv = ConvBNLayer(input_channels,
                                 1,
                                 final_oup,
                                 bn_act=None,
                                 padding_type=padding_type,
                                 name=name,
                                 conv_name=name + "_project_conv",
                                 bn_name="_bn2",
                                 model_name=model_name,
                                 cur_stage=cur_stage)

    def forward(self, inputs: paddle.Tensor):
        return self._conv(inputs)


class SEBlock(nn.Layer):
    """Basic Squeeze-and-Excitation block for Efficientnet."""
    def __init__(self,
                 input_channels: int,
                 num_squeezed_channels: int,
                 oup: int,
                 padding_type: str,
                 name: str = None,
                 model_name: str = None,
                 cur_stage: str = None):
        super(SEBlock, self).__init__()

        self._pool = AdaptiveAvgPool2d(1)
        self._conv1 = Conv2ds(input_channels,
                              num_squeezed_channels,
                              1,
                              use_bias=True,
                              padding_type=padding_type,
                              act="swish",
                              name=name + "_se_reduce")

        self._conv2 = Conv2ds(num_squeezed_channels,
                              oup,
                              1,
                              act="sigmoid",
                              use_bias=True,
                              padding_type=padding_type,
                              name=name + "_se_expand")

    def forward(self, inputs: paddle.Tensor):
        x = self._pool(inputs)
        x = self._conv1(x)
        x = self._conv2(x)
        return paddle.multiply(inputs, x)


class MbConvBlock(nn.Layer):
    """Mobile inverted bottleneck convolution for Efficientnet."""
    def __init__(self,
                 input_channels: int,
                 block_args: dict,
                 padding_type: str,
                 use_se: bool,
                 name: str = None,
                 drop_connect_rate: float = None,
                 is_test: bool = False,
                 model_name: str = None,
                 cur_stage: str = None):
        super(MbConvBlock, self).__init__()

        oup = block_args.input_filters * block_args.expand_ratio
        self.block_args = block_args
        self.has_se = use_se and (block_args.se_ratio is not None) and (0 < block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip
        self.expand_ratio = block_args.expand_ratio
        self.drop_connect_rate = drop_connect_rate
        self.is_test = is_test

        if self.expand_ratio != 1:
            self._ecn = ExpandConvNorm(input_channels,
                                       block_args,
                                       padding_type=padding_type,
                                       name=name,
                                       model_name=model_name,
                                       cur_stage=cur_stage)

        self._dcn = DepthwiseConvNorm(input_channels * block_args.expand_ratio,
                                      block_args,
                                      padding_type=padding_type,
                                      name=name,
                                      model_name=model_name,
                                      cur_stage=cur_stage)

        if self.has_se:
            num_squeezed_channels = max(1, int(block_args.input_filters * block_args.se_ratio))
            self._se = SEBlock(input_channels * block_args.expand_ratio,
                               num_squeezed_channels,
                               oup,
                               padding_type=padding_type,
                               name=name,
                               model_name=model_name,
                               cur_stage=cur_stage)

        self._pcn = ProjectConvNorm(input_channels * block_args.expand_ratio,
                                    block_args,
                                    padding_type=padding_type,
                                    name=name,
                                    model_name=model_name,
                                    cur_stage=cur_stage)

    def forward(self, inputs: paddle.Tensor):
        x = inputs
        if self.expand_ratio != 1:
            x = self._ecn(x)
            x = F.swish(x)
        x = self._dcn(x)
        x = F.swish(x)
        if self.has_se:
            x = self._se(x)
        x = self._pcn(x)
        if self.id_skip and \
                self.block_args.stride == 1 and \
                self.block_args.input_filters == self.block_args.output_filters:
            if self.drop_connect_rate:
                x = _drop_connect(x, self.drop_connect_rate, self.is_test)
            x = paddle.elementwise_add(x, inputs)
        return x


class ConvStemNorm(nn.Layer):
    """Basic conv stem norm block for extracting features."""
    def __init__(self,
                 input_channels: int,
                 padding_type: str,
                 _global_params: dict,
                 name: str = None,
                 model_name: str = None,
                 cur_stage: str = None):
        super(ConvStemNorm, self).__init__()

        output_channels = round_filters(32, _global_params)
        self._conv = ConvBNLayer(input_channels,
                                 filter_size=3,
                                 output_channels=output_channels,
                                 stride=2,
                                 bn_act=None,
                                 padding_type=padding_type,
                                 name="",
                                 conv_name="_conv_stem",
                                 bn_name="_bn0",
                                 model_name=model_name,
                                 cur_stage=cur_stage)

    def forward(self, inputs: paddle.Tensor):
        return self._conv(inputs)


class ExtractFeatures(nn.Layer):
    """Extract features."""
    def __init__(self,
                 input_channels: int,
                 _block_args: dict,
                 _global_params: dict,
                 padding_type: str,
                 use_se: bool,
                 is_test: bool,
                 model_name: str = None):
        super(ExtractFeatures, self).__init__()

        self._global_params = _global_params

        self._conv_stem = ConvStemNorm(input_channels,
                                       padding_type=padding_type,
                                       _global_params=_global_params,
                                       model_name=model_name,
                                       cur_stage=0)

        self.block_args_copy = copy.deepcopy(_block_args)
        idx = 0
        block_size = 0
        for block_arg in self.block_args_copy:
            block_arg = block_arg._replace(input_filters=round_filters(block_arg.input_filters, _global_params),
                                           output_filters=round_filters(block_arg.output_filters, _global_params),
                                           num_repeat=round_repeats(block_arg.num_repeat, _global_params))
            block_size += 1
            for _ in range(block_arg.num_repeat - 1):
                block_size += 1

        self.conv_seq = []
        cur_stage = 1
        for block_args in _block_args:
            block_args = block_args._replace(input_filters=round_filters(block_args.input_filters, _global_params),
                                             output_filters=round_filters(block_args.output_filters, _global_params),
                                             num_repeat=round_repeats(block_args.num_repeat, _global_params))

            drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / block_size

            _mc_block = self.add_sublayer(
                "_blocks." + str(idx) + ".",
                MbConvBlock(block_args.input_filters,
                            block_args=block_args,
                            padding_type=padding_type,
                            use_se=use_se,
                            name="_blocks." + str(idx) + ".",
                            drop_connect_rate=drop_connect_rate,
                            model_name=model_name,
                            cur_stage=cur_stage))
            self.conv_seq.append(_mc_block)
            idx += 1
            if block_args.num_repeat > 1:
                block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                drop_connect_rate = self._global_params.drop_connect_rate if not is_test else 0
                if drop_connect_rate:
                    drop_connect_rate *= float(idx) / block_size
                _mc_block = self.add_sublayer(
                    "block." + str(idx) + ".",
                    MbConvBlock(block_args.input_filters,
                                block_args,
                                padding_type=padding_type,
                                use_se=use_se,
                                name="_blocks." + str(idx) + ".",
                                drop_connect_rate=drop_connect_rate,
                                model_name=model_name,
                                cur_stage=cur_stage))
                self.conv_seq.append(_mc_block)
                idx += 1
            cur_stage += 1

    def forward(self, inputs: paddle.Tensor):
        x = self._conv_stem(inputs)
        x = F.swish(x)
        for _mc_block in self.conv_seq:
            x = _mc_block(x)
        return x


@moduleinfo(name="efficientnetb3_imagenet",
            type="cv/classification",
            author="paddlepaddle",
            author_email="",
            summary="efficientnetb3_imagenet is a classification model, "
            "this module is trained with Imagenet dataset.",
            version="1.1.0",
            meta=ImageClassifierModule)
class EfficientNet_B3(nn.Layer):
    def __init__(self,
                 is_test: bool = False,
                 padding_type: str = "SAME",
                 override_params: dict = None,
                 use_se: bool = True,
                 class_dim: int = 1000,
                 load_checkpoint: str = None):
        super(EfficientNet_B3, self).__init__()

        model_name = 'efficientnet-b3'
        self.name = "b3"
        self._block_args, self._global_params = get_model_params(model_name, override_params)
        self.padding_type = padding_type
        self.use_se = use_se
        self.is_test = is_test

        self._ef = ExtractFeatures(3,
                                   self._block_args,
                                   self._global_params,
                                   self.padding_type,
                                   self.use_se,
                                   self.is_test,
                                   model_name=self.name)

        output_channels = round_filters(1280, self._global_params)
        oup = 384

        self._conv = ConvBNLayer(oup,
                                 1,
                                 output_channels,
                                 bn_act="swish",
                                 padding_type=self.padding_type,
                                 name="",
                                 conv_name="_conv_head",
                                 bn_name="_bn1",
                                 model_name=self.name,
                                 cur_stage=7)
        self._pool = AdaptiveAvgPool2d(1)

        if self._global_params.dropout_rate:
            self._drop = Dropout(p=self._global_params.dropout_rate, mode="upscale_in_train")

        param_attr, bias_attr = init_fc_layer("_fc")
        self._fc = Linear(output_channels, class_dim, weight_attr=param_attr, bias_attr=bias_attr)

        if load_checkpoint is not None:
            model_dict = paddle.load(load_checkpoint)[0]
            self.set_dict(model_dict)
            print("load custom checkpoint success")

        else:
            checkpoint = os.path.join(self.directory, 'efficientnet_b3_imagenet.pdparams')
            if not os.path.exists(checkpoint):
                os.system(
                    'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/efficientnet_b3_imagenet.pdparams -O '
                    + checkpoint)
            model_dict = paddle.load(checkpoint)[0]
            self.set_dict(model_dict)
            print("load pretrained checkpoint success")

    def forward(self, inputs: paddle.Tensor):
        x = self._ef(inputs)
        x = self._conv(x)
        x = self._pool(x)
        if self._global_params.dropout_rate:
            x = self._drop(x)
        x = paddle.squeeze(x, axis=[2, 3])
        x = self._fc(x)
        return x