dataset.py 6.0 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

K
kinghuin 已提交
20 21 22 23 24 25
import os

import paddlehub as hub
from paddlehub.common.downloader import default_downloader
from paddlehub.common.logger import logger

26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
class InputExample(object):
    """
    Input data structure of BERT/ERNIE, can satisfy single sequence task like
    text classification, sequence lableing; Sequence pair task like dialog
    task.
    """

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.
    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
      label: (Optional) string. The label of the example. This should be
        specified for train and dev examples, but not for test examples.
    """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label

Z
Zeyu Chen 已提交
50 51 52 53
    def __str__(self):
        if self.text_b is None:
            return "text={}\tlabel={}".format(self.text_a, self.label)
        else:
K
kinghuin 已提交
54
            return "text_a={}\ttext_b={},label={}".format(
W
wuzewu 已提交
55
                self.text_a, self.text_b, self.label)
Z
Zeyu Chen 已提交
56

57

K
kinghuin 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
class BaseDataset(object):
    def __init__(self,
                 base_path,
                 train_file=None,
                 dev_file=None,
                 test_file=None,
                 predict_file=None,
                 label_file=None,
                 label_list=None,
                 train_file_with_head=False,
                 dev_file_with_head=False,
                 test_file_with_head=False,
                 predict_file_with_head=False):
        if not (train_file or dev_file or test_file):
            raise ValueError("At least one file should be assigned")
        self.base_path = base_path
        self.train_file = train_file
        self.dev_file = dev_file
        self.test_file = test_file
        self.predict_file = predict_file
        self.label_file = label_file
        self.label_list = label_list

        self.train_examples = []
        self.dev_examples = []
        self.test_examples = []
        self.predict_examples = []

        self.if_file_with_head = {
            "train": train_file_with_head,
            "dev": dev_file_with_head,
            "test": test_file_with_head,
            "predict": predict_file_with_head
        }

        if train_file:
            self._load_train_examples()
        if dev_file:
            self._load_dev_examples()
        if test_file:
            self._load_test_examples()
        if predict_file:
            self._load_predict_examples()
        if self.label_file:
            if not self.label_list:
                self.label_list = self._load_label_data()
            else:
                logger.warning(
                    "As label_list has been assigned, label_file is noneffective"
                )

109
    def get_train_examples(self):
K
kinghuin 已提交
110
        return self.train_examples
111 112

    def get_dev_examples(self):
K
kinghuin 已提交
113
        return self.dev_examples
114 115

    def get_test_examples(self):
K
kinghuin 已提交
116
        return self.test_examples
117 118 119 120

    def get_val_examples(self):
        return self.get_dev_examples()

K
kinghuin 已提交
121 122 123
    def get_predict_examples(self):
        return self.predict_examples

124
    def get_labels(self):
K
kinghuin 已提交
125
        return self.label_list
Z
Zeyu Chen 已提交
126

K
kinghuin 已提交
127
    @property
Z
Zeyu Chen 已提交
128
    def num_labels(self):
K
kinghuin 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        return len(self.label_list)

    def label_dict(self):
        return {index: key for index, key in enumerate(self.label_list)}

    def _download_dataset(self, dataset_path, url):
        if not os.path.exists(dataset_path):
            result, tips, dataset_path = default_downloader.download_file_and_uncompress(
                url=url,
                save_path=hub.common.dir.DATA_HOME,
                print_progress=True,
                replace=True)
            if not result:
                raise Exception(tips)
        else:
            logger.info("Dataset {} already cached.".format(dataset_path))
        return dataset_path

    def _load_train_examples(self):
        self.train_path = os.path.join(self.base_path, self.train_file)
        self.train_examples = self._read_file(self.train_path, phase="train")

    def _load_dev_examples(self):
        self.dev_path = os.path.join(self.base_path, self.dev_file)
        self.dev_examples = self._read_file(self.dev_path, phase="dev")

    def _load_test_examples(self):
        self.test_path = os.path.join(self.base_path, self.test_file)
        self.test_examples = self._read_file(self.test_path, phase="test")

    def _load_predict_examples(self):
        self.predict_path = os.path.join(self.base_path, self.predict_file)
        self.predict_examples = self._read_file(
            self.predict_path, phase="predict")

    def _read_file(self, path, phase=None):
        raise NotImplementedError

    def _load_label_data(self):
        with open(os.path.join(self.base_path, self.label_file), "r") as file:
            return file.read().split("\n")

    def __str__(self):
        return "Dataset: %s with %i train examples, %i dev examples and %i test examples" % (
            self.__class__.__name__, len(self.train_examples),
            len(self.dev_examples), len(self.test_examples))


# add alias, compatible with old version
HubDataset = BaseDataset