transforms.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
# Refer https://github.com/intel-isl/MiDaS

import numpy as np
import cv2


class Resize(object):
    """Resize sample to given size (width, height).
    """
    def __init__(self,
                 width,
                 height,
                 resize_target=True,
                 keep_aspect_ratio=False,
                 ensure_multiple_of=1,
                 resize_method="lower_bound",
                 image_interpolation_method=cv2.INTER_AREA):
        """Init.

        Args:
            width (int): desired output width
            height (int): desired output height
            resize_target (bool, optional):
                True: Resize the full sample (image, mask, target).
                False: Resize image only.
                Defaults to True.
            keep_aspect_ratio (bool, optional):
                True: Keep the aspect ratio of the input sample.
                Output sample might not have the given width and height, and
                resize behaviour depends on the parameter 'resize_method'.
                Defaults to False.
            ensure_multiple_of (int, optional):
                Output width and height is constrained to be multiple of this parameter.
                Defaults to 1.
            resize_method (str, optional):
                "lower_bound": Output will be at least as large as the given size.
                "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
                "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
                Defaults to "lower_bound".
        """
        self.__width = width
        self.__height = height

        self.__resize_target = resize_target
        self.__keep_aspect_ratio = keep_aspect_ratio
        self.__multiple_of = ensure_multiple_of
        self.__resize_method = resize_method
        self.__image_interpolation_method = image_interpolation_method

    def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
        y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)

        if max_val is not None and y > max_val:
            y = (np.floor(x / self.__multiple_of) *
                 self.__multiple_of).astype(int)

        if y < min_val:
            y = (np.ceil(x / self.__multiple_of) *
                 self.__multiple_of).astype(int)

        return y

    def get_size(self, width, height):
        # determine new height and width
        scale_height = self.__height / height
        scale_width = self.__width / width

        if self.__keep_aspect_ratio:
            if self.__resize_method == "lower_bound":
                # scale such that output size is lower bound
                if scale_width > scale_height:
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            elif self.__resize_method == "upper_bound":
                # scale such that output size is upper bound
                if scale_width < scale_height:
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            elif self.__resize_method == "minimal":
                # scale as least as possbile
                if abs(1 - scale_width) < abs(1 - scale_height):
                    # fit width
                    scale_height = scale_width
                else:
                    # fit height
                    scale_width = scale_height
            else:
                raise ValueError(
                    f"resize_method {self.__resize_method} not implemented")

        if self.__resize_method == "lower_bound":
            new_height = self.constrain_to_multiple_of(scale_height * height,
                                                       min_val=self.__height)
            new_width = self.constrain_to_multiple_of(scale_width * width,
                                                      min_val=self.__width)
        elif self.__resize_method == "upper_bound":
            new_height = self.constrain_to_multiple_of(scale_height * height,
                                                       max_val=self.__height)
            new_width = self.constrain_to_multiple_of(scale_width * width,
                                                      max_val=self.__width)
        elif self.__resize_method == "minimal":
            new_height = self.constrain_to_multiple_of(scale_height * height)
            new_width = self.constrain_to_multiple_of(scale_width * width)
        else:
            raise ValueError(
                f"resize_method {self.__resize_method} not implemented")

        return (new_width, new_height)

    def __call__(self, sample):
        width, height = self.get_size(sample["image"].shape[1],
                                      sample["image"].shape[0])

        # resize sample
        sample["image"] = cv2.resize(
            sample["image"],
            (width, height),
            interpolation=self.__image_interpolation_method,
        )

        if self.__resize_target:
            if "disparity" in sample:
                sample["disparity"] = cv2.resize(
                    sample["disparity"],
                    (width, height),
                    interpolation=cv2.INTER_NEAREST,
                )

            if "depth" in sample:
                sample["depth"] = cv2.resize(sample["depth"], (width, height),
                                             interpolation=cv2.INTER_NEAREST)

            sample["mask"] = cv2.resize(
                sample["mask"].astype(np.float32),
                (width, height),
                interpolation=cv2.INTER_NEAREST,
            )
            sample["mask"] = sample["mask"].astype(bool)

        return sample


class NormalizeImage(object):
    """Normlize image by given mean and std.
    """
    def __init__(self, mean, std):
        self.__mean = mean
        self.__std = std

    def __call__(self, sample):
        sample["image"] = (sample["image"] - self.__mean) / self.__std

        return sample


class PrepareForNet(object):
    """Prepare sample for usage as network input.
    """
    def __init__(self):
        pass

    def __call__(self, sample):
        image = np.transpose(sample["image"], (2, 0, 1))
        sample["image"] = np.ascontiguousarray(image).astype(np.float32)

        if "mask" in sample:
            sample["mask"] = sample["mask"].astype(np.float32)
            sample["mask"] = np.ascontiguousarray(sample["mask"])

        if "disparity" in sample:
            disparity = sample["disparity"].astype(np.float32)
            sample["disparity"] = np.ascontiguousarray(disparity)

        if "depth" in sample:
            depth = sample["depth"].astype(np.float32)
            sample["depth"] = np.ascontiguousarray(depth)

        return sample