train.py 11.9 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import time
import sys
import functools
import math
import paddle
import paddle.fluid as fluid
import paddle.dataset.flowers as flowers
import reader
import argparse
import functools
import subprocess
import utils
import nets
import paddle_hub as hub
from utils.learning_rate import cosine_decay
from utils.fp16_utils import create_master_params_grads, master_param_to_train_param
from utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
W
wuzewu 已提交
26
add_arg('create_module',    bool, False,                  "create a hub module or not" )
W
wuzewu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
add_arg('batch_size',       int,   32,                  "Minibatch size.")
add_arg('use_gpu',          bool,  True,                 "Whether to use GPU or not.")
add_arg('total_images',     int,   12000,              "Training image number.")
add_arg('num_epochs',       int,   120,                  "number of epochs.")
add_arg('class_dim',        int,   2,                 "Class number.")
add_arg('image_shape',      str,   "3,224,224",          "input image size")
add_arg('model_save_dir',   str,   "output",             "model save directory")
add_arg('pretrained_model', str,   None,                 "Whether to use pretrained model.")
add_arg('lr',               float, 0.1,                  "set learning rate.")
add_arg('lr_strategy',      str,   "piecewise_decay",    "Set the learning rate decay strategy.")
add_arg('model',            str,   "ResNet50", "Set the network to use.")
add_arg('data_dir',         str,   "./dataset",  "The ImageNet dataset root dir.")
add_arg('fp16',             bool,  False,                "Enable half precision training with fp16." )
add_arg('scale_loss',       float, 1.0,                  "Scale loss for fp16." )
# yapf: enable


def optimizer_setting(params):
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 12000
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

    elif ls["name"] == "cosine_decay":
        if "total_images" not in params:
            total_images = 12000
        else:
            total_images = params["total_images"]

        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        lr = params["lr"]
        num_epochs = params["num_epochs"]

        optimizer = fluid.optimizer.Momentum(
            learning_rate=cosine_decay(
                learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(4e-5))
    elif ls["name"] == "exponential_decay":
        if "total_images" not in params:
            total_images = 12000
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)
        lr = params["lr"]
        num_epochs = params["num_epochs"]
        learning_decay_rate_factor = ls["learning_decay_rate_factor"]
        num_epochs_per_decay = ls["num_epochs_per_decay"]
        NUM_GPUS = 1

        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=lr * NUM_GPUS,
                decay_steps=step * num_epochs_per_decay / NUM_GPUS,
                decay_rate=learning_decay_rate_factor),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(4e-5))

    else:
        lr = params["lr"]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=lr,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

    return optimizer


def net_config(image, label, model, args):
    class_dim = args.class_dim
    model_name = args.model

    out, feature_map = model.net(input=image, class_dim=class_dim)
    cost, pred = fluid.layers.softmax_with_cross_entropy(
        out, label, return_softmax=True)
    if args.scale_loss > 1:
        avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
    else:
        avg_cost = fluid.layers.mean(x=cost)

    acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)

    return avg_cost, acc_top1, out, feature_map


def build_program(is_train, main_prog, startup_prog, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    model_name = args.model
    model = nets.__dict__[model_name]()
    with fluid.program_guard(main_prog, startup_prog):
        py_reader = fluid.layers.py_reader(
            capacity=16,
            shapes=[[-1] + image_shape, [-1, 1]],
            lod_levels=[0, 0],
            dtypes=["float32", "int64"],
            use_double_buffer=True)
        with fluid.unique_name.guard():
            image, label = fluid.layers.read_file(py_reader)
            if args.fp16:
                image = fluid.layers.cast(image, "float16")
            avg_cost, acc_top1, predition, feature_map = net_config(
                image, label, model, args)
            avg_cost.persistable = True
            acc_top1.persistable = True
            if is_train:
                params = model.params
                params["total_images"] = args.total_images
                params["lr"] = args.lr
                params["num_epochs"] = args.num_epochs
                params["learning_strategy"]["batch_size"] = args.batch_size
                params["learning_strategy"]["name"] = args.lr_strategy

                optimizer = optimizer_setting(params)

                if args.fp16:
                    params_grads = optimizer.backward(avg_cost)
                    master_params_grads = create_master_params_grads(
                        params_grads, main_prog, startup_prog, args.scale_loss)
                    optimizer.apply_gradients(master_params_grads)
                    master_param_to_train_param(master_params_grads,
                                                params_grads, main_prog)
                else:
                    optimizer.minimize(avg_cost)

    return py_reader, avg_cost, acc_top1, image, predition, feature_map


def train(args):
    # parameters from arguments
    model_name = args.model
    pretrained_model = args.pretrained_model
    model_save_dir = args.model_save_dir

    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    test_prog = fluid.Program()

    train_py_reader, train_cost, train_acc, image, predition, feature_map = build_program(
        is_train=True,
        main_prog=train_prog,
        startup_prog=startup_prog,
        args=args)
    test_py_reader, test_cost, test_acc, image, predition, feature_map = build_program(
        is_train=False,
        main_prog=test_prog,
        startup_prog=startup_prog,
        args=args)
    test_prog = test_prog.clone(for_test=True)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(
            exe, pretrained_model, main_program=train_prog, predicate=if_exist)

W
wuzewu 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217
    if args.create_module:
        assert pretrained_model, "need a pretrained module to create a hub module"
        sign1 = hub.create_signature(
            "classification", inputs=[image], outputs=[predition])
        sign2 = hub.create_signature(
            "feature_map", inputs=[image], outputs=[feature_map])
        sign3 = hub.create_signature(inputs=[image], outputs=[predition])
        hub.create_module(
            sign_arr=[sign1, sign2, sign3],
            program=train_prog,
            module_dir="hub_module_" + args.model)
        exit()

W
wuzewu 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
        device_num = subprocess.check_output(['nvidia-smi',
                                              '-L']).decode().count('\n')

    train_batch_size = args.batch_size / device_num
    test_batch_size = 16
    train_reader = paddle.batch(
        reader.train(), batch_size=train_batch_size, drop_last=True)
    test_reader = paddle.batch(reader.val(), batch_size=test_batch_size)

    train_py_reader.decorate_paddle_reader(train_reader)
    test_py_reader.decorate_paddle_reader(test_reader)
    train_exe = fluid.ParallelExecutor(
        main_program=train_prog,
        use_cuda=bool(args.use_gpu),
        loss_name=train_cost.name)

    train_fetch_list = [train_cost.name, train_acc.name]
    test_fetch_list = [test_cost.name, test_acc.name]

    params = nets.__dict__[args.model]().params

    for pass_id in range(params["num_epochs"]):

        train_py_reader.start()

        train_info = [[], [], []]
        test_info = [[], [], []]
        train_time = []
        batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc = train_exe.run(fetch_list=train_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(np.array(loss))
                acc = np.mean(np.array(acc))
                train_info[0].append(loss)
                train_info[1].append(acc)
                train_time.append(period)
                if batch_id % 10 == 0:
                    print("Pass {0}, trainbatch {1}, loss {2}, \
                        acc {3}, time {4}".format(pass_id, batch_id, loss, acc,
                                                  "%2.2f sec" % period))
                    sys.stdout.flush()
                batch_id += 1
        except fluid.core.EOFException:
            train_py_reader.reset()

        train_loss = np.array(train_info[0]).mean()
        train_acc = np.array(train_info[1]).mean()
        train_speed = np.array(train_time).mean() / (
            train_batch_size * device_num)

        test_py_reader.start()

        test_batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc = exe.run(
                    program=test_prog, fetch_list=test_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(loss)
                acc = np.mean(acc)
                test_info[0].append(loss)
                test_info[1].append(acc)
                if test_batch_id % 10 == 0:
                    print("Pass {0},testbatch {1},loss {2}, \
                        acc {3},time {4}".format(pass_id, test_batch_id, loss,
                                                 acc, "%2.2f sec" % period))
                    sys.stdout.flush()
                test_batch_id += 1
        except fluid.core.EOFException:
            test_py_reader.reset()

        test_loss = np.array(test_info[0]).mean()
        test_acc = np.array(test_info[1]).mean()

        print("End pass {0}, train_loss {1}, train_acc {2}, "
              "test_loss {3}, test_acc {4}".format(
                  pass_id, train_loss, train_acc, test_loss, test_acc))
        sys.stdout.flush()

        model_path = os.path.join(model_save_dir + '/' + model_name,
                                  str(pass_id))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        fluid.io.save_persistables(exe, model_path, main_program=train_prog)


def main():
    args = parser.parse_args()
    assert args.model in nets.__all__, "model is not in list %s" % nets.__all__
    print_arguments(args)
    train(args)


if __name__ == '__main__':
    main()