module.py 9.9 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
# coding=utf-8
from __future__ import absolute_import
from __future__ import division

import ast
import argparse
import os

import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
from paddlehub.common.paddle_helper import add_vars_prefix

from resnet50_vd_wildanimals.processor import postprocess, base64_to_cv2
from resnet50_vd_wildanimals.data_feed import reader
from resnet50_vd_wildanimals.resnet_vd import ResNet50_vd


@moduleinfo(
    name="resnet50_vd_wildanimals",
    type="CV/image_classification",
    author="baidu-vis",
    author_email="",
    summary=
    "ResNet50vd is a image classfication model, this module is trained with IFAW's self-built wild animals dataset.",
    version="1.0.0")
class ResNet50vdWildAnimals(hub.Module):
    def _initialize(self):
        self.default_pretrained_model_path = os.path.join(
            self.directory, "model")
        label_file = os.path.join(self.directory, "label_list.txt")
        with open(label_file, 'r', encoding='utf-8') as file:
            self.label_list = file.read().split("\n")[:-1]
        self._set_config()

    def get_expected_image_width(self):
        return 224

    def get_expected_image_height(self):
        return 224

    def get_pretrained_images_mean(self):
        im_mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3)
        return im_mean

    def get_pretrained_images_std(self):
        im_std = np.array([0.229, 0.224, 0.225]).reshape(1, 3)
        return im_std

    def _set_config(self):
        """
        predictor config setting.
        """
        cpu_config = AnalysisConfig(self.default_pretrained_model_path)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        self.cpu_predictor = create_paddle_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = AnalysisConfig(self.default_pretrained_model_path)
            gpu_config.disable_glog_info()
            gpu_config.enable_use_gpu(
                memory_pool_init_size_mb=1000, device_id=0)
            self.gpu_predictor = create_paddle_predictor(gpu_config)

    def context(self, trainable=True, pretrained=True):
        """context for transfer learning.

        Args:
            trainable (bool): Set parameters in program to be trainable.
            pretrained (bool) : Whether to load pretrained model.

        Returns:
            inputs (dict): key is 'image', corresponding vaule is image tensor.
            outputs (dict): key is :
                'classification', corresponding value is the result of classification.
                'feature_map', corresponding value is the result of the layer before the fully connected layer.
            context_prog (fluid.Program): program for transfer learning.
        """
        context_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(context_prog, startup_prog):
            with fluid.unique_name.guard():
                image = fluid.layers.data(
                    name="image", shape=[3, 224, 224], dtype="float32")
                resnet_vd = ResNet50_vd()
                output, feature_map = resnet_vd.net(
                    input=image, class_dim=len(self.label_list))

                name_prefix = '@HUB_{}@'.format(self.name)
                inputs = {'image': name_prefix + image.name}
                outputs = {
                    'classification': name_prefix + output.name,
                    'feature_map': name_prefix + feature_map.name
                }
                add_vars_prefix(context_prog, name_prefix)
                add_vars_prefix(startup_prog, name_prefix)
                global_vars = context_prog.global_block().vars
                inputs = {
                    key: global_vars[value]
                    for key, value in inputs.items()
                }
                outputs = {
                    key: global_vars[value]
                    for key, value in outputs.items()
                }

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                # pretrained
                if pretrained:

                    def _if_exist(var):
                        b = os.path.exists(
                            os.path.join(self.default_pretrained_model_path,
                                         var.name))
                        return b

                    fluid.io.load_vars(
                        exe,
                        self.default_pretrained_model_path,
                        context_prog,
                        predicate=_if_exist)
                else:
                    exe.run(startup_prog)
                # trainable
                for param in context_prog.global_block().iter_parameters():
                    param.trainable = trainable
        return inputs, outputs, context_prog

    def classification(self,
                       images=None,
                       paths=None,
                       batch_size=1,
                       use_gpu=False,
                       top_k=1):
        """
        API for image classification.

        Args:
            images (numpy.ndarray): data of images, shape of each is [H, W, C].
            paths (list[str]): The paths of images.
            batch_size (int): batch size.
            use_gpu (bool): Whether to use gpu.
            top_k (int): Return top k results.

        Returns:
            res (list[dict]): The classfication results.
        """
W
wuzewu 已提交
158 159 160 161 162 163 164 165 166
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
            except:
                raise RuntimeError(
                    "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
                )

W
wuzewu 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        all_data = list()
        for yield_data in reader(images, paths):
            all_data.append(yield_data)

        total_num = len(all_data)
        loop_num = int(np.ceil(total_num / batch_size))

        res = list()
        for iter_id in range(loop_num):
            batch_data = list()
            handle_id = iter_id * batch_size
            for image_id in range(batch_size):
                try:
                    batch_data.append(all_data[handle_id + image_id])
                except:
                    pass
            # feed batch image
            batch_image = np.array([data['image'] for data in batch_data])
            batch_image = PaddleTensor(batch_image.copy())
            predictor_output = self.gpu_predictor.run([
                batch_image
            ]) if use_gpu else self.cpu_predictor.run([batch_image])
            out = postprocess(
                data_out=predictor_output[0].as_ndarray(),
                label_list=self.label_list,
                top_k=top_k)
            res += out
        return res

    def save_inference_model(self,
                             dirname,
                             model_filename=None,
                             params_filename=None,
                             combined=True):
        if combined:
            model_filename = "__model__" if not model_filename else model_filename
            params_filename = "__params__" if not params_filename else params_filename
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        program, feeded_var_names, target_vars = fluid.io.load_inference_model(
            dirname=self.default_pretrained_model_path, executor=exe)

        fluid.io.save_inference_model(
            dirname=dirname,
            main_program=program,
            executor=exe,
            feeded_var_names=feeded_var_names,
            target_vars=target_vars,
            model_filename=model_filename,
            params_filename=params_filename)

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.classification(images=images_decode, **kwargs)
        return results

    @runnable
    def run_cmd(self, argvs):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)
        self.arg_input_group = self.parser.add_argument_group(
            title="Input options", description="Input data. Required")
        self.arg_config_group = self.parser.add_argument_group(
            title="Config options",
            description=
            "Run configuration for controlling module behavior, not required.")
        self.add_module_config_arg()
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
        results = self.classification(
            paths=[args.input_path],
            batch_size=args.batch_size,
            use_gpu=args.use_gpu)
        return results

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument(
            '--use_gpu',
            type=ast.literal_eval,
            default=False,
            help="whether use GPU or not.")
        self.arg_config_group.add_argument(
            '--batch_size',
            type=ast.literal_eval,
            default=1,
            help="batch size.")
        self.arg_config_group.add_argument(
            '--top_k',
            type=ast.literal_eval,
            default=1,
            help="Return top k results.")

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
        self.arg_input_group.add_argument(
            '--input_path', type=str, help="path to image.")