base_cv_dataset.py 2.7 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

W
wuzewu 已提交
21 22
import paddlehub as hub
from paddlehub.common.downloader import default_downloader
W
wuzewu 已提交
23 24


W
wuzewu 已提交
25
class ImageClassificationDataset(object):
W
wuzewu 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    def __init__(self):
        self.base_path = None
        self.train_list_file = None
        self.test_list_file = None
        self.validate_list_file = None
        self.num_labels = 0

    def _download_dataset(self, dataset_path, url):
        if not os.path.exists(dataset_path):
            result, tips, dataset_path = default_downloader.download_file_and_uncompress(
                url=url,
                save_path=hub.dir.DATA_HOME,
                print_progress=True,
                replace=True)
            if not result:
                print(tips)
                exit()
        return dataset_path

    def _parse_data(self, data_path, shuffle=False):
        def _base_reader():
            data = []
            with open(data_path, "r") as file:
                while True:
                    line = file.readline()
                    if not line:
                        break
                    line = line.strip()
                    items = line.split(" ")
                    image_path = os.path.join(self.base_path, items[0])
                    label = items[1]
                    data.append((image_path, items[1]))

            if shuffle:
                np.random.shuffle(data)

            for item in data:
                yield item

        return _base_reader()

    def train_data(self, shuffle=True):
        train_data_path = os.path.join(self.base_path, self.train_list_file)
        return self._parse_data(train_data_path, shuffle)

    def test_data(self, shuffle=False):
        test_data_path = os.path.join(self.base_path, self.test_list_file)
        return self._parse_data(test_data_path, shuffle)

    def validate_data(self, shuffle=False):
        validate_data_path = os.path.join(self.base_path,
                                          self.validate_list_file)
        return self._parse_data(validate_data_path, shuffle)