module.py 12.7 KB
Newer Older
H
haoyuying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
import os

import paddle
import paddle.nn as nn
import numpy as np
import paddle.nn.functional as F

from paddlehub.module.module import moduleinfo
from paddlehub.process.transforms import Compose, Resize, CenterCrop, SetType
from paddlehub.module.cv_module import StyleTransferModule


class GramMatrix(nn.Layer):
    """Calculate gram matrix"""
    def forward(self, y):
        (b, ch, h, w) = y.size()
        features = y.reshape((b, ch, w * h))
        features_t = features.transpose((0, 2, 1))
        gram = features.bmm(features_t) / (ch * h * w)
        return gram


class ConvLayer(nn.Layer):
    """Basic conv layer with reflection padding layer"""
    def __init__(self, in_channels: int, out_channels: int, kernel_size: int, stride: int):
        super(ConvLayer, self).__init__()
        pad = int(np.floor(kernel_size / 2))
        self.reflection_pad = nn.ReflectionPad2d([pad, pad, pad, pad])
        self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)

    def forward(self, x: paddle.Tensor):
        out = self.reflection_pad(x)
        out = self.conv2d(out)
        return out


class UpsampleConvLayer(nn.Layer):
    """
    Upsamples the input and then does a convolution. This method gives better results compared to ConvTranspose2d.
    ref: http://distill.pub/2016/deconv-checkerboard/

    Args:
       in_channels(int): Number of input channels.
       out_channels(int): Number of output channels.
       kernel_size(int): Number of kernel size.
       stride(int): Number of stride.
       upsample(int): Scale factor for upsample layer, default is None.

    Return:
        img(paddle.Tensor): UpsampleConvLayer output.
    """
    def __init__(self, in_channels: int, out_channels: int, kernel_size: int, stride: int, upsample=None):
        super(UpsampleConvLayer, self).__init__()
        self.upsample = upsample
        if upsample:
            self.upsample_layer = nn.UpSample(scale_factor=upsample)
        self.pad = int(np.floor(kernel_size / 2))
        if self.pad != 0:
            self.reflection_pad = nn.ReflectionPad2d([self.pad, self.pad, self.pad, self.pad])
        self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)

    def forward(self, x):
        if self.upsample:
            x = self.upsample_layer(x)
        if self.pad != 0:
            x = self.reflection_pad(x)
        out = self.conv2d(x)
        return out


class Bottleneck(nn.Layer):
    """ Pre-activation residual block
        Identity Mapping in Deep Residual Networks
        ref https://arxiv.org/abs/1603.05027

    Args:
       inplanes(int): Number of input channels.
       planes(int): Number of output channels.
       stride(int): Number of stride.
       downsample(int): Scale factor for downsample layer, default is None.
       norm_layer(nn.Layer): Batch norm layer, default is nn.BatchNorm2d.

    Return:
        img(paddle.Tensor): Bottleneck output.
    """
    def __init__(self,
                 inplanes: int,
                 planes: int,
                 stride: int = 1,
                 downsample: int = None,
                 norm_layer: nn.Layer = nn.BatchNorm2d):
        super(Bottleneck, self).__init__()
        self.expansion = 4
        self.downsample = downsample
        if self.downsample is not None:
            self.residual_layer = nn.Conv2d(inplanes, planes * self.expansion, kernel_size=1, stride=stride)

        conv_block = (norm_layer(inplanes), nn.ReLU(), nn.Conv2d(inplanes, planes, kernel_size=1, stride=1),
                      norm_layer(planes), nn.ReLU(), ConvLayer(planes, planes, kernel_size=3, stride=stride),
                      norm_layer(planes), nn.ReLU(), nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
                                                               stride=1))

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x: paddle.Tensor):
        if self.downsample is not None:
            residual = self.residual_layer(x)
        else:
            residual = x
        m = self.conv_block(x)
        return residual + self.conv_block(x)


class UpBottleneck(nn.Layer):
    """ Up-sample residual block (from MSG-Net paper)
    Enables passing identity all the way through the generator
    ref https://arxiv.org/abs/1703.06953

    Args:
       inplanes(int): Number of input channels.
       planes(int): Number of output channels.
       stride(int): Number of stride, default is 2.
       norm_layer(nn.Layer): Batch norm layer, default is nn.BatchNorm2d.

    Return:
        img(paddle.Tensor): UpBottleneck output.
    """
    def __init__(self, inplanes: int, planes: int, stride: int = 2, norm_layer: nn.Layer = nn.BatchNorm2d):
        super(UpBottleneck, self).__init__()
        self.expansion = 4
        self.residual_layer = UpsampleConvLayer(inplanes,
                                                planes * self.expansion,
                                                kernel_size=1,
                                                stride=1,
                                                upsample=stride)
        conv_block = []
        conv_block += [norm_layer(inplanes), nn.ReLU(), nn.Conv2d(inplanes, planes, kernel_size=1, stride=1)]

        conv_block += [
            norm_layer(planes),
            nn.ReLU(),
            UpsampleConvLayer(planes, planes, kernel_size=3, stride=1, upsample=stride)
        ]

        conv_block += [
            norm_layer(planes),
            nn.ReLU(),
            nn.Conv2d(planes, planes * self.expansion, kernel_size=1, stride=1)
        ]

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x: paddle.Tensor):
        return self.residual_layer(x) + self.conv_block(x)


class Inspiration(nn.Layer):
    """ Inspiration Layer (from MSG-Net paper)
    tuning the featuremap with target Gram Matrix
    ref https://arxiv.org/abs/1703.06953

    Args:
       C(int): Number of input channels.
       B(int):  B is equal to 1 or input mini_batch, default is 1.

    Return:
        img(paddle.Tensor): UpBottleneck output.
    """
    def __init__(self, C: int, B: int = 1):
        super(Inspiration, self).__init__()

        self.weight = self.weight = paddle.create_parameter(shape=[1, C, C], dtype='float32')
        # non-parameter buffer
        self.G = paddle.to_tensor(np.random.rand(B, C, C))
        self.C = C

    def setTarget(self, target: paddle.Tensor):
        self.G = target

    def forward(self, X: paddle.Tensor):
        # input X is a 3D feature map
        self.P = paddle.bmm(self.weight.expand_as(self.G), self.G)

        x = paddle.bmm(
            self.P.transpose((0, 2, 1)).expand((X.shape[0], self.C, self.C)), X.reshape(
                (X.shape[0], X.shape[1], -1))).reshape(X.shape)
        return x

    def __repr__(self):
        return self.__class__.__name__ + '(' \
               + 'N x ' + str(self.C) + ')'


class Vgg16(nn.Layer):
    """ First four layers from Vgg16."""
    def __init__(self):
        super(Vgg16, self).__init__()
        self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)

        self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)

        self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)

        self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)

        self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)

        checkpoint = os.path.join(self.directory, 'vgg16.pdparams')
        if not os.path.exists(checkpoint):
            os.system('wget https://bj.bcebos.com/paddlehub/model/image/image_editing/vgg_paddle.pdparams -O ' +
                      checkpoint)
        model_dict = paddle.load(checkpoint)[0]
        self.set_dict(model_dict)
        print("load pretrained vgg16 checkpoint success")

    def forward(self, X):
        h = F.relu(self.conv1_1(X))
        h = F.relu(self.conv1_2(h))
        relu1_2 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv2_1(h))
        h = F.relu(self.conv2_2(h))
        relu2_2 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv3_1(h))
        h = F.relu(self.conv3_2(h))
        h = F.relu(self.conv3_3(h))
        relu3_3 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv4_1(h))
        h = F.relu(self.conv4_2(h))
        h = F.relu(self.conv4_3(h))
        relu4_3 = h

        return [relu1_2, relu2_2, relu3_3, relu4_3]


@moduleinfo(
    name="msgnet",
    type="CV/image_editing",
    author="paddlepaddle",
    author_email="",
    summary="Msgnet is a image colorization style transfer model, this module is trained with COCO2014 dataset.",
    version="1.0.0",
    meta=StyleTransferModule)
class MSGNet(nn.Layer):
    """ MSGNet (from MSG-Net paper)
    Enables passing identity all the way through the generator
    ref https://arxiv.org/abs/1703.06953

    Args:
       input_nc(int): Number of input channels, default is 3.
       output_nc(int): Number of output channels, default is 3.
       ngf(int): Number of input channel for middle layer, default is 128.
       n_blocks(int): Block number, default is 6.
       norm_layer(nn.Layer): Batch norm layer, default is nn.InstanceNorm2d.
       load_checkpoint(str): Pretrained checkpoint path, default is None.

    Return:
        img(paddle.Tensor): MSGNet output.
    """
    def __init__(self,
                 input_nc=3,
                 output_nc=3,
                 ngf=128,
                 n_blocks=6,
                 norm_layer=nn.InstanceNorm2d,
                 load_checkpoint=None):
        super(MSGNet, self).__init__()
        self.gram = GramMatrix()
        block = Bottleneck
        upblock = UpBottleneck
        expansion = 4

        model1 = [
            ConvLayer(input_nc, 64, kernel_size=7, stride=1),
            norm_layer(64),
            nn.ReLU(),
            block(64, 32, 2, 1, norm_layer),
            block(32 * expansion, ngf, 2, 1, norm_layer)
        ]

        self.model1 = nn.Sequential(*tuple(model1))

        model = []
        model += model1

        self.ins = Inspiration(ngf * expansion)
        model.append(self.ins)
        for i in range(n_blocks):
            model += [block(ngf * expansion, ngf, 1, None, norm_layer)]

        model += [
            upblock(ngf * expansion, 32, 2, norm_layer),
            upblock(32 * expansion, 16, 2, norm_layer),
            norm_layer(16 * expansion),
            nn.ReLU(),
            ConvLayer(16 * expansion, output_nc, kernel_size=7, stride=1)
        ]
        model = tuple(model)
        self.model = nn.Sequential(*model)

        if load_checkpoint is not None:
            model_dict = paddle.load(load_checkpoint)[0]
            self.set_dict(model_dict)
            print("load custom checkpoint success")

        else:
            checkpoint = os.path.join(self.directory, 'style_paddle.pdparams')
            if not os.path.exists(checkpoint):
                os.system('wget https://bj.bcebos.com/paddlehub/model/image/image_editing/style_paddle.pdparams -O ' +
                          checkpoint)
            model_dict = paddle.load(checkpoint)[0]
            model_dict_clone = model_dict.copy()
            for key, value in model_dict_clone.items():
                if key.endswith(("scale")):
                    name = key.rsplit('.', 1)[0] + '.bias'
                    model_dict[name] = paddle.zeros(shape=model_dict[name].shape, dtype='float32')
                    model_dict[key] = paddle.ones(shape=model_dict[key].shape, dtype='float32')
            self.set_dict(model_dict)
            print("load pretrained checkpoint success")

        self._vgg = None

    def transform(self, path: str):
        transform = Compose([Resize(
            (256, 256), interp='LINEAR'), CenterCrop(crop_size=256)], SetType(datatype='float32'))
        return transform(path)

    def setTarget(self, Xs: paddle.Tensor):
        """Calculate feature gram matrix"""
        F = self.model1(Xs)
        G = self.gram(F)
        self.ins.setTarget(G)

    def getFeature(self, input: paddle.Tensor):
        if not self._vgg:
            self._vgg = Vgg16()
        return self._vgg(input)

    def forward(self, input: paddle.Tensor):
        return self.model(input)