infer.py 22.6 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import json
import math
import os
import sys
from functools import reduce
from pathlib import Path

import cv2
import numpy as np
import paddle
import yaml
from keypoint_preprocess import EvalAffine
from keypoint_preprocess import expand_crop
from keypoint_preprocess import TopDownEvalAffine
from paddle.inference import Config
from paddle.inference import create_predictor
from preprocess import decode_image
from preprocess import LetterBoxResize
from preprocess import NormalizeImage
from preprocess import Pad
from preprocess import PadStride
from preprocess import Permute
from preprocess import preprocess
from preprocess import Resize
from preprocess import WarpAffine
from visualize import visualize_box

# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
    'Face',
    'FCOS',
    'SOLOv2',
    'TTFNet',
    'S2ANet',
    'JDE',
    'FairMOT',
    'DeepSORT',
    'GFL',
    'PicoDet',
    'CenterNet',
    'TOOD',
    'RetinaNet',
    'StrongBaseline',
    'STGCN',
    'YOLOX',
}


class Detector(object):
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT.
                                    Used by action model.
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
        self.pred_config = self.set_config(model_dir)
        self.device = device
        self.predictor, self.config = load_predictor(model_dir,
                                                     run_mode=run_mode,
                                                     batch_size=batch_size,
                                                     min_subgraph_size=self.pred_config.min_subgraph_size,
                                                     device=device,
                                                     use_dynamic_shape=self.pred_config.use_dynamic_shape,
                                                     trt_min_shape=trt_min_shape,
                                                     trt_max_shape=trt_max_shape,
                                                     trt_opt_shape=trt_opt_shape,
                                                     trt_calib_mode=trt_calib_mode,
                                                     cpu_threads=cpu_threads,
                                                     enable_mkldnn=enable_mkldnn,
                                                     enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
                                                     delete_shuffle_pass=delete_shuffle_pass)
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)

    def preprocess(self, image_list):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
            im, im_info = preprocess(im_path, preprocess_ops)
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        return inputs

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

    def predict(self, repeats=1):
        '''
        Args:
            repeats (int): repeats number for prediction
        Returns:
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's result include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
        # model prediction
        np_boxes, np_masks = None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
            if self.pred_config.mask:
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
            if k != 'masks':
                results[k] = np.concatenate(v)
        return results

    def predict_image(self, image_list, run_benchmark=False, repeats=1, visual=True, save_file=None):
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
        results = []
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
C
chenjian 已提交
221 222 223 224 225 226 227
            # preprocess
            inputs = self.preprocess(batch_image_list)

            # model prediction
            result = self.predict()

            # postprocess
C
fix  
chenjian 已提交
228

C
chenjian 已提交
229 230 231 232 233 234 235 236
            result = self.postprocess(inputs, result)

            if visual:
                visualize(batch_image_list,
                          result,
                          self.pred_config.labels,
                          output_dir=self.output_dir,
                          threshold=self.threshold)
C
chenjian 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

        if save_file is not None:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.format_coco_results(image_list, results, save_file=save_file)

        results = self.merge_batch_result(results)
        return results

    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame[:, :, ::-1]], visual=False)

            im = visualize_box(frame, results, self.pred_config.labels, threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()

    @staticmethod
    def format_coco_results(image_list, results, save_file=None):
        coco_results = []
        image_id = 0

        for result in results:
            start_idx = 0
            for box_num in result['boxes_num']:
                idx_slice = slice(start_idx, start_idx + box_num)
                start_idx += box_num

                image_file = image_list[image_id]
                image_id += 1

                if 'boxes' in result:
                    boxes = result['boxes'][idx_slice, :]
                    per_result = [
                        {
                            'image_file': image_file,
                            'bbox': [box[2], box[3], box[4] - box[2], box[5] - box[3]],  # xyxy -> xywh
                            'score': box[1],
                            'category_id': int(box[0]),
                        } for k, box in enumerate(boxes.tolist())
                    ]

                elif 'segm' in result:
                    import pycocotools.mask as mask_util

                    scores = result['score'][idx_slice].tolist()
                    category_ids = result['label'][idx_slice].tolist()
                    segms = result['segm'][idx_slice, :]
                    rles = [
                        mask_util.encode(np.array(mask[:, :, np.newaxis], dtype=np.uint8, order='F'))[0]
                        for mask in segms
                    ]
                    for rle in rles:
                        rle['counts'] = rle['counts'].decode('utf-8')

                    per_result = [{
                        'image_file': image_file,
                        'segmentation': rle,
                        'score': scores[k],
                        'category_id': category_ids[k],
                    } for k, rle in enumerate(rles)]

                else:
                    raise RuntimeError('')

                # per_result = [item for item in per_result if item['score'] > threshold]
                coco_results.extend(per_result)

        if save_file:
            with open(os.path.join(save_file), 'w') as f:
                json.dump(coco_results, f)

        return coco_results


def create_inputs(imgs, im_info):
    """generate input for different model type
    Args:
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

    im_shape = []
    scale_factor = []
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array((im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array((im_info[0]['scale_factor'], )).astype('float32')
        return inputs

    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros((im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.mask = False
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print('The RCNN export model is used for ONNX and it only supports batch_size = 1')
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf['arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='paddle',
                   batch_size=1,
                   device='CPU',
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
                   trt_opt_shape=640,
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False,
                   enable_mkldnn_bfloat16=False,
                   delete_shuffle_pass=False):
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT.
                                    Used by action model.
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
        ValueError: predict by TensorRT need device == 'GPU'.
    """
    if device != 'GPU' and run_mode != 'paddle':
        raise ValueError("Predict by TensorRT mode: {}, expect device=='GPU', but device == {}".format(
            run_mode, device))
    config = Config(os.path.join(model_dir, 'model.pdmodel'), os.path.join(model_dir, 'model.pdiparams'))
    if device == 'GPU':
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
    elif device == 'XPU':
        config.enable_lite_engine()
        config.enable_xpu(10 * 1024 * 1024)
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
            except Exception as e:
                print("The current environment does not support `mkldnn`, so disable mkldnn.")
                pass

    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(workspace_size=(1 << 25) * batch_size,
                                      max_batch_size=batch_size,
                                      min_subgraph_size=min_subgraph_size,
                                      precision_mode=precision_map[run_mode],
                                      use_static=False,
                                      use_calib_mode=trt_calib_mode)

        if use_dynamic_shape:
            min_input_shape = {'image': [batch_size, 3, trt_min_shape, trt_min_shape]}
            max_input_shape = {'image': [batch_size, 3, trt_max_shape, trt_max_shape]}
            opt_input_shape = {'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape, opt_input_shape)
            print('trt set dynamic shape done!')

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
    predictor = create_predictor(config)
    return predictor, config


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--image_file or --image_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
    # visualize the predict result
    start_idx = 0
    for idx, image_file in enumerate(image_list):
        im_bboxes_num = result['boxes_num'][idx]
        im_results = {}
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx + im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx + im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx + im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx + im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx + im_bboxes_num]

        start_idx += im_bboxes_num
        im = visualize_box(image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)