text_cls.py 4.0 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
S
Steffy-zxf 已提交
15
"""Fine-tuning on classification task """
16

Z
Zeyu Chen 已提交
17
import argparse
Z
Zeyu Chen 已提交
18
import ast
19 20 21 22 23
import paddlehub as hub

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
S
Steffy-zxf 已提交
24
parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for fine-tuning, input should be True or False")
25 26
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
K
kinghuin 已提交
27 28
parser.add_argument("--warmup_proportion", type=float, default=0.1, help="Warmup proportion params for warmup strategy")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
29 30
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.")
W
wuzewu 已提交
31
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
32 33 34 35
args = parser.parse_args()
# yapf: enable.

if __name__ == '__main__':
K
kinghuin 已提交
36 37

    # Load Paddlehub ERNIE Tiny pretrained model
S
Steffy-zxf 已提交
38
    module = hub.Module(name="ernie_tiny")
Z
Zeyu Chen 已提交
39 40
    inputs, outputs, program = module.context(
        trainable=True, max_seq_len=args.max_seq_len)
41

K
kinghuin 已提交
42 43 44 45 46 47 48 49 50
    # Download dataset and use accuracy as metrics
    # Choose dataset: GLUE/XNLI/ChinesesGLUE/NLPCC-DBQA/LCQMC
    # metric should be acc, f1 or matthews
    dataset = hub.dataset.ChnSentiCorp()
    metrics_choices = ["acc"]

    # For ernie_tiny, it use sub-word to tokenize chinese sentence
    # If not ernie tiny, sp_model_path and word_dict_path should be set None
    reader = hub.reader.ClassifyReader(
Z
Zeyu Chen 已提交
51
        dataset=dataset,
52
        vocab_path=module.get_vocab_path(),
K
kinghuin 已提交
53 54 55
        max_seq_len=args.max_seq_len,
        sp_model_path=module.get_spm_path(),
        word_dict_path=module.get_word_dict_path())
56

57
    # Construct transfer learning network
K
kinghuin 已提交
58
    # Use "pooled_output" for classification tasks on an entire sentence.
W
wuzewu 已提交
59
    # Use "sequence_output" for token-level output.
S
Steffy-zxf 已提交
60
    pooled_output = outputs["pooled_output"]
61

W
wuzewu 已提交
62
    # Setup feed list for data feeder
K
kinghuin 已提交
63
    # Must feed all the tensor of module need
W
wuzewu 已提交
64
    feed_list = [
K
kinghuin 已提交
65 66 67 68
        inputs["input_ids"].name,
        inputs["position_ids"].name,
        inputs["segment_ids"].name,
        inputs["input_mask"].name,
W
wuzewu 已提交
69
    ]
70

S
Steffy-zxf 已提交
71
    # Select fine-tune strategy, setup config and fine-tune
W
wuzewu 已提交
72
    strategy = hub.AdamWeightDecayStrategy(
K
kinghuin 已提交
73
        warmup_proportion=args.warmup_proportion,
W
wuzewu 已提交
74
        weight_decay=args.weight_decay,
K
kinghuin 已提交
75
        learning_rate=args.learning_rate)
Z
Zeyu Chen 已提交
76

S
Steffy-zxf 已提交
77
    # Setup RunConfig for PaddleHub Fine-tune API
W
wuzewu 已提交
78
    config = hub.RunConfig(
W
wuzewu 已提交
79
        use_data_parallel=args.use_data_parallel,
W
wuzewu 已提交
80 81 82 83 84
        use_cuda=args.use_gpu,
        num_epoch=args.num_epoch,
        batch_size=args.batch_size,
        checkpoint_dir=args.checkpoint_dir,
        strategy=strategy)
Z
Zeyu Chen 已提交
85

S
Steffy-zxf 已提交
86
    # Define a classfication fine-tune task by PaddleHub's API
K
kinghuin 已提交
87
    cls_task = hub.TextClassifierTask(
W
wuzewu 已提交
88
        data_reader=reader,
S
Steffy-zxf 已提交
89
        feature=pooled_output,
W
wuzewu 已提交
90
        feed_list=feed_list,
91
        num_classes=dataset.num_labels,
S
Steffy-zxf 已提交
92
        config=config,
K
kinghuin 已提交
93
        metrics_choices=metrics_choices)
94

S
Steffy-zxf 已提交
95
    # Fine-tune and evaluate by PaddleHub's API
96
    # will finish training, evaluation, testing, save model automatically
K
kinghuin 已提交
97
    cls_task.finetune_and_eval()