app_single.py 15.5 KB
Newer Older
走神的阿圆's avatar
走神的阿圆 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
# coding: utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from flask import Flask, request, render_template
from paddlehub.serving.model_service.text_model_service import TextModelService
from paddlehub.serving.model_service.image_model_service import ImageModelService
from paddlehub.common import utils
# from model_service.text_model_service import TextModelService
# from model_service.image_model_service import ImageModelService
import time
import os
import base64
import logging

nlp_module_method = {
    "lac": "predict_lexical_analysis",
    "simnet_bow": "predict_sentiment_analysis",
    "lm_lstm": "predict_pretrained_model",
    "senta_lstm": "predict_pretrained_model",
    "senta_gru": "predict_pretrained_model",
    "senta_cnn": "predict_pretrained_model",
    "senta_bow": "predict_pretrained_model",
    "senta_bilstm": "predict_pretrained_model",
    "emotion_detection_textcnn": "predict_pretrained_model"
}
cv_module_method = {
    "vgg19_imagenet": "predict_classification",
    "vgg16_imagenet": "predict_classification",
    "vgg13_imagenet": "predict_classification",
    "vgg11_imagenet": "predict_classification",
    "shufflenet_v2_imagenet": "predict_classification",
    "se_resnext50_32x4d_imagenet": "predict_classification",
    "se_resnext101_32x4d_imagenet": "predict_classification",
    "resnet_v2_50_imagenet": "predict_classification",
    "resnet_v2_34_imagenet": "predict_classification",
    "resnet_v2_18_imagenet": "predict_classification",
    "resnet_v2_152_imagenet": "predict_classification",
    "resnet_v2_101_imagenet": "predict_classification",
    "pnasnet_imagenet": "predict_classification",
    "nasnet_imagenet": "predict_classification",
    "mobilenet_v2_imagenet": "predict_classification",
    "googlenet_imagenet": "predict_classification",
    "alexnet_imagenet": "predict_classification",
    "yolov3_coco2017": "predict_object_detection",
    "ultra_light_fast_generic_face_detector_1mb_640":
    "predict_object_detection",
    "ultra_light_fast_generic_face_detector_1mb_320":
    "predict_object_detection",
    "ssd_mobilenet_v1_pascal": "predict_object_detection",
    "pyramidbox_face_detection": "predict_object_detection",
    "faster_rcnn_coco2017": "predict_object_detection",
    "cyclegan_cityscapes": "predict_gan",
    "deeplabv3p_xception65_humanseg": "predict_semantic_segmentation",
    "ace2p": "predict_semantic_segmentation"
}


68
def predict_sentiment_analysis(module, input_text, batch_size, extra=None):
走神的阿圆's avatar
走神的阿圆 已提交
69 70 71 72 73 74
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        data = input_text[0]
        data.update(input_text[1])
75 76
        results = predict_method(
            data=data, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
77 78 79 80 81 82 83
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    return results


84
def predict_pretrained_model(module, input_text, batch_size, extra=None):
走神的阿圆's avatar
走神的阿圆 已提交
85 86 87 88 89
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        data = {"text": input_text}
90 91
        results = predict_method(
            data=data, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
92 93 94 95 96 97 98
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    return results


99
def predict_lexical_analysis(module, input_text, batch_size, extra=[]):
走神的阿圆's avatar
走神的阿圆 已提交
100 101 102 103 104 105
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    data = {"text": input_text}
    try:
        if extra == []:
106 107
            results = predict_method(
                data=data, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
108 109 110
        else:
            user_dict = extra[0]
            results = predict_method(
111 112 113 114
                data=data,
                user_dict=user_dict,
                use_gpu=use_gpu,
                batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
115 116 117 118 119 120 121 122 123
            for path in extra:
                os.remove(path)
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    return results


124
def predict_classification(module, input_img, batch_size):
走神的阿圆's avatar
走神的阿圆 已提交
125 126 127 128 129
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
130 131
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
132 133 134 135 136 137 138
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    return results


139
def predict_gan(module, input_img, id, batch_size, extra={}):
走神的阿圆's avatar
走神的阿圆 已提交
140 141 142 143 144 145 146
    # special
    output_folder = module.name.split("_")[0] + "_" + "output"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
147 148
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    base64_list = []
    results_pack = []
    input_img = input_img.get("image", [])
    for index in range(len(input_img)):
        # special
        item = input_img[index]
        with open(os.path.join(output_folder, item), "rb") as fp:
            # special
            b_head = "data:image/" + item.split(".")[-1] + ";base64"
            b_body = base64.b64encode(fp.read())
            b_body = str(b_body).replace("b'", "").replace("'", "")
            b_img = b_head + "," + b_body
            base64_list.append(b_img)
166
            results[index] = results[index].replace(id + "_", "")
走神的阿圆's avatar
走神的阿圆 已提交
167 168 169 170 171 172 173 174
            results[index] = {"path": results[index]}
            results[index].update({"base64": b_img})
            results_pack.append(results[index])
        os.remove(item)
        os.remove(os.path.join(output_folder, item))
    return results_pack


175
def predict_object_detection(module, input_img, id, batch_size):
走神的阿圆's avatar
走神的阿圆 已提交
176 177 178 179 180 181
    output_folder = "output"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
182 183
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    base64_list = []
    results_pack = []
    input_img = input_img.get("image", [])
    for index in range(len(input_img)):
        item = input_img[index]
        with open(os.path.join(output_folder, item), "rb") as fp:
            b_head = "data:image/" + item.split(".")[-1] + ";base64"
            b_body = base64.b64encode(fp.read())
            b_body = str(b_body).replace("b'", "").replace("'", "")
            b_img = b_head + "," + b_body
            base64_list.append(b_img)
199 200
            results[index]["path"] = results[index]["path"].replace(
                id + "_", "")
走神的阿圆's avatar
走神的阿圆 已提交
201 202 203 204 205 206 207
            results[index].update({"base64": b_img})
            results_pack.append(results[index])
        os.remove(item)
        os.remove(os.path.join(output_folder, item))
    return results_pack


208
def predict_semantic_segmentation(module, input_img, id, batch_size):
走神的阿圆's avatar
走神的阿圆 已提交
209 210 211 212 213 214 215
    # special
    output_folder = module.name.split("_")[-1] + "_" + "output"
    global use_gpu
    method_name = module.desc.attr.map.data['default_signature'].s
    predict_method = getattr(module, method_name)
    try:
        input_img = {"image": input_img}
216 217
        results = predict_method(
            data=input_img, use_gpu=use_gpu, batch_size=batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    except Exception as err:
        curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
        print(curr, " - ", err)
        return {"result": "Please check data format!"}
    base64_list = []
    results_pack = []
    input_img = input_img.get("image", [])
    for index in range(len(input_img)):
        # special
        item = input_img[index]
        with open(results[index]["processed"], "rb") as fp:
            # special
            b_head = "data:image/png;base64"
            b_body = base64.b64encode(fp.read())
            b_body = str(b_body).replace("b'", "").replace("'", "")
            b_img = b_head + "," + b_body
            base64_list.append(b_img)
235 236 237 238
            results[index]["origin"] = results[index]["origin"].replace(
                id + "_", "")
            results[index]["processed"] = results[index]["processed"].replace(
                id + "_", "")
走神的阿圆's avatar
走神的阿圆 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            results[index].update({"base64": b_img})
            results_pack.append(results[index])
        os.remove(item)
        os.remove(results[index]["processed"])
    return results_pack


def create_app():
    app_instance = Flask(__name__)
    app_instance.config["JSON_AS_ASCII"] = False
    gunicorn_logger = logging.getLogger('gunicorn.error')
    app_instance.logger.handlers = gunicorn_logger.handlers
    app_instance.logger.setLevel(gunicorn_logger.level)

    @app_instance.route("/", methods=["GET", "POST"])
    def index():
        return render_template("main.html")

    @app_instance.before_request
    def before_request():
        request.data = {"id": utils.md5(request.remote_addr + str(time.time()))}
        pass

    @app_instance.route("/get/modules", methods=["GET", "POST"])
    def get_modules_info():
        global nlp_module, cv_module
        module_info = {}
        if len(nlp_module) > 0:
            module_info.update({"nlp_module": [{"Choose...": "Choose..."}]})
            for item in nlp_module:
                module_info["nlp_module"].append({item: item})
        if len(cv_module) > 0:
            module_info.update({"cv_module": [{"Choose...": "Choose..."}]})
            for item in cv_module:
                module_info["cv_module"].append({item: item})
        module_info.update({"Choose...": [{"请先选择分类": "Choose..."}]})
        return {"module_info": module_info}

    @app_instance.route("/predict/image/<module_name>", methods=["POST"])
    def predict_image(module_name):
        req_id = request.data.get("id")
280
        global use_gpu, batch_size_dict
走神的阿圆's avatar
走神的阿圆 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        img_base64 = request.form.getlist("image")
        file_name_list = []
        if img_base64 != []:
            for item in img_base64:
                ext = item.split(";")[0].split("/")[-1]
                if ext not in ["jpeg", "jpg", "png"]:
                    return {"result": "Unrecognized file type"}
                filename = req_id + "_" \
                           + utils.md5(str(time.time())+item[0:20]) \
                           + "." \
                           + ext
                img_data = base64.b64decode(item.split(',')[-1])
                file_name_list.append(filename)
                with open(filename, "wb") as fp:
                    fp.write(img_data)
        else:
            file = request.files.getlist("image")
            for item in file:
                file_name = req_id + "_" + item.filename
                item.save(file_name)
                file_name_list.append(file_name)
        module = ImageModelService.get_module(module_name)
        predict_func_name = cv_module_method.get(module_name, "")
        if predict_func_name != "":
            predict_func = eval(predict_func_name)
        else:
            module_type = module.type.split("/")[-1].replace("-", "_").lower()
            predict_func = eval("predict_" + module_type)
309 310
        batch_size = batch_size_dict.get(module_name, 1)
        results = predict_func(module, file_name_list, req_id, batch_size)
走神的阿圆's avatar
走神的阿圆 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        r = {"results": str(results)}
        return r

    @app_instance.route("/predict/text/<module_name>", methods=["POST"])
    def predict_text(module_name):
        req_id = request.data.get("id")
        global use_gpu
        if module_name == "simnet_bow":
            text_1 = request.form.getlist("text_1")
            text_2 = request.form.getlist("text_2")
            data = [{"text_1": text_1}, {"text_2": text_2}]
        else:
            data = request.form.getlist("text")
        file = request.files.getlist("user_dict")
        module = TextModelService.get_module(module_name)
        predict_func_name = nlp_module_method.get(module_name, "")
        if predict_func_name != "":
            predict_func = eval(predict_func_name)
        else:
            module_type = module.type.split("/")[-1].replace("-", "_").lower()
            predict_func = eval("predict_" + module_type)
        file_list = []
        for item in file:
            file_path = req_id + "_" + item.filename
            file_list.append(file_path)
            item.save(file_path)
337 338
        batch_size = batch_size_dict.get(module_name, 1)
        results = predict_func(module, data, batch_size, file_list)
走神的阿圆's avatar
走神的阿圆 已提交
339 340 341 342 343 344
        return {"results": results}

    return app_instance


def config_with_file(configs):
345
    global nlp_module, cv_module, batch_size_dict
走神的阿圆's avatar
走神的阿圆 已提交
346 347
    nlp_module = []
    cv_module = []
348
    batch_size_dict = {}
走神的阿圆's avatar
走神的阿圆 已提交
349 350 351 352 353 354
    for item in configs:
        print(item)
        if item["category"] == "CV":
            cv_module.append(item["module"])
        elif item["category"] == "NLP":
            nlp_module.append(item["module"])
355
        batch_size_dict.update({item["module"]: item["batch_size"]})
走神的阿圆's avatar
走神的阿圆 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401


def run(is_use_gpu=False, configs=None, port=8866, timeout=60):
    global use_gpu, time_out
    time_out = timeout
    use_gpu = is_use_gpu
    if configs is not None:
        config_with_file(configs)
    else:
        print("Start failed cause of missing configuration.")
        return
    my_app = create_app()
    my_app.run(host="0.0.0.0", port=port, debug=False)
    print("PaddleHub-Serving has been stopped.")


if __name__ == "__main__":
    configs = [{
        'category': 'NLP',
        u'queue_size': 20,
        u'version': u'1.0.0',
        u'module': 'lac',
        u'batch_size': 20
    },
               {
                   'category': 'NLP',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'senta_lstm',
                   u'batch_size': 20
               },
               {
                   'category': 'CV',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'yolov3_coco2017',
                   u'batch_size': 20
               },
               {
                   'category': 'CV',
                   u'queue_size': 20,
                   u'version': u'1.0.0',
                   u'module': 'faster_rcnn_coco2017',
                   u'batch_size': 20
               }]
    run(is_use_gpu=False, configs=configs)