modeling_roberta.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# FIXME(zhangxuefei): remove this file after paddlenlp is released.

import paddle
import paddle.nn as nn

from paddlehub.module.nlp_module import PretrainedModel, register_base_model


class RobertaEmbeddings(nn.Layer):
    """
    Include embeddings from word, position and token_type embeddings
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 hidden_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 pad_token_id=0):
        super(RobertaEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(vocab_size, hidden_size, padding_idx=pad_token_id)
        self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
        self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)
        self.layer_norm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        if position_ids is None:
            # maybe need use shape op to unify static graph and dynamic graph
            seq_length = input_ids.shape[1]
            position_ids = paddle.arange(0, seq_length, dtype="int64")
        if token_type_ids is None:
            token_type_ids = paddle.zeros_like(input_ids, dtype="int64")

        input_embedings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = input_embedings + position_embeddings + token_type_embeddings
        embeddings = self.layer_norm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class RobertaPooler(nn.Layer):
    """
    """

    def __init__(self, hidden_size):
        super(RobertaPooler, self).__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class RobertaPretrainedModel(PretrainedModel):
    """
    An abstract class for pretrained RoBERTa models. It provides RoBERTa related
    `model_config_file`, `resource_files_names`, `pretrained_resource_files_map`,
    `pretrained_init_configuration`, `base_model_prefix` for downloading and
    loading pretrained models. See `PretrainedModel` for more details.
    """

    model_config_file = "model_config.json"
    pretrained_init_configuration = {
        "roberta-wwm-ext": {
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 768,
            "initializer_range": 0.02,
            "intermediate_size": 3072,
            "max_position_embeddings": 512,
            "num_attention_heads": 12,
            "num_hidden_layers": 12,
            "type_vocab_size": 2,
            "vocab_size": 21128,
            "pad_token_id": 0
        },
        "roberta-wwm-ext-large": {
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 1024,
            "initializer_range": 0.02,
            "intermediate_size": 4096,
            "max_position_embeddings": 512,
            "num_attention_heads": 16,
            "num_hidden_layers": 24,
            "type_vocab_size": 2,
            "vocab_size": 21128,
            "pad_token_id": 0
        }
    }
    resource_files_names = {"model_state": "model_state.pdparams"}
    pretrained_resource_files_map = {
        "model_state": {
            "roberta-wwm-ext":
            "https://paddlenlp.bj.bcebos.com/models/transformers/roberta_base/roberta_chn_base.pdparams",
            "roberta-wwm-ext-large":
            "https://paddlenlp.bj.bcebos.com/models/transformers/roberta_large/roberta_chn_large.pdparams",
        }
    }
    base_model_prefix = "roberta"

    def init_weights(self, layer):
        """ Initialization hook """
        if isinstance(layer, (nn.Linear, nn.Embedding)):
            # only support dygraph, use truncated_normal and make it inplace
            # and configurable later
            layer.weight.set_value(
                paddle.tensor.normal(
                    mean=0.0,
                    std=self.initializer_range
                    if hasattr(self, "initializer_range") else self.roberta.config["initializer_range"],
                    shape=layer.weight.shape))
        elif isinstance(layer, nn.LayerNorm):
            layer._epsilon = 1e-12


@register_base_model
class RobertaModel(RobertaPretrainedModel):
    """
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02,
                 pad_token_id=0):
        super(RobertaModel, self).__init__()
        self.pad_token_id = pad_token_id
        self.initializer_range = initializer_range
        self.embeddings = RobertaEmbeddings(vocab_size, hidden_size, hidden_dropout_prob, max_position_embeddings,
                                            type_vocab_size, pad_token_id)
        encoder_layer = nn.TransformerEncoderLayer(
            hidden_size,
            num_attention_heads,
            intermediate_size,
            dropout=hidden_dropout_prob,
            activation=hidden_act,
            attn_dropout=attention_probs_dropout_prob,
            act_dropout=0)
        self.encoder = nn.TransformerEncoder(encoder_layer, num_hidden_layers)
        self.pooler = RobertaPooler(hidden_size)
        self.apply(self.init_weights)

    def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
        if attention_mask is None:
            attention_mask = paddle.unsqueeze(
                (input_ids == self.pad_token_id).astype(self.pooler.dense.weight.dtype) * -1e9, axis=[1, 2])
        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
        encoder_outputs = self.encoder(embedding_output, attention_mask)
        sequence_output = encoder_outputs
        pooled_output = self.pooler(sequence_output)
        return sequence_output, pooled_output


class RobertaForSequenceClassification(RobertaPretrainedModel):
    """
    Model for sentence (pair) classification task with RoBERTa.
    Args:
        roberta (RobertaModel): An instance of `RobertaModel`.
        num_classes (int, optional): The number of classes. Default 2
        dropout (float, optional): The dropout probability for output of RoBERTa.
            If None, use the same value as `hidden_dropout_prob` of `RobertaModel`
            instance `Roberta`. Default None
    """

    def __init__(self, roberta, num_classes=2, dropout=None):
        super(RobertaForSequenceClassification, self).__init__()
        self.num_classes = num_classes
        self.roberta = roberta  # allow roberta to be config
        self.dropout = nn.Dropout(dropout if dropout is not None else self.roberta.config["hidden_dropout_prob"])
        self.classifier = nn.Linear(self.roberta.config["hidden_size"], num_classes)
        self.apply(self.init_weights)

    def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
        _, pooled_output = self.roberta(
            input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask)

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        return logits