transformer_encoder.py 12.9 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from functools import partial

import paddle.fluid as fluid
import paddle.fluid.layers as layers


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
                         n_head=1,
                         dropout_rate=0.,
                         cache=None,
                         param_initializer=None,
                         name='multi_head_att'):
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    keys = queries if keys is None else keys
    values = keys if values is None else values

    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
W
wuzewu 已提交
47
        raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
W
wuzewu 已提交
48 49 50 51 52

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
G
grasswolfs 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        q = layers.fc(input=queries,
                      size=d_key * n_head,
                      num_flatten_dims=2,
                      param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
                      bias_attr=name + '_query_fc.b_0')
        k = layers.fc(input=keys,
                      size=d_key * n_head,
                      num_flatten_dims=2,
                      param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
                      bias_attr=name + '_key_fc.b_0')
        v = layers.fc(input=values,
                      size=d_value * n_head,
                      num_flatten_dims=2,
                      param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
                      bias_attr=name + '_value_fc.b_0')
W
wuzewu 已提交
68 69 70 71 72 73 74 75 76 77 78 79
        return q, k, v

    def __split_heads(x, n_head):
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        hidden_size = x.shape[-1]
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
W
wuzewu 已提交
80
        reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
W
wuzewu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

        # permuate the dimensions into:
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) == 3: return x
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
W
wuzewu 已提交
98
        return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
W
wuzewu 已提交
99 100 101 102 103 104 105 106 107 108 109

    def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        scaled_q = layers.scale(x=q, scale=d_key**-0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
G
grasswolfs 已提交
110 111 112 113
            weights = layers.dropout(weights,
                                     dropout_prob=dropout_rate,
                                     dropout_implementation="upscale_in_train",
                                     is_test=False)
W
wuzewu 已提交
114 115 116 117 118 119 120 121 122
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)

    if cache is not None:  # use cache and concat time steps
        # Since the inplace reshape in __split_heads changes the shape of k and
        # v, which is the cache input for next time step, reshape the cache
        # input from the previous time step first.
W
wuzewu 已提交
123 124
        k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
        v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
W
wuzewu 已提交
125 126 127 128 129

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

W
wuzewu 已提交
130
    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
W
wuzewu 已提交
131 132 133 134

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
G
grasswolfs 已提交
135 136 137 138 139
    proj_out = layers.fc(input=out,
                         size=d_model,
                         num_flatten_dims=2,
                         param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
                         bias_attr=name + '_output_fc.b_0')
W
wuzewu 已提交
140 141 142
    return proj_out


W
wuzewu 已提交
143
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
W
wuzewu 已提交
144 145 146 147 148
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
G
grasswolfs 已提交
149 150 151 152 153 154
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
                       act=hidden_act,
                       param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
                       bias_attr=name + '_fc_0.b_0')
W
wuzewu 已提交
155
    if dropout_rate:
G
grasswolfs 已提交
156 157 158 159 160 161 162 163 164
        hidden = layers.dropout(hidden,
                                dropout_prob=dropout_rate,
                                dropout_implementation="upscale_in_train",
                                is_test=False)
    out = layers.fc(input=hidden,
                    size=d_hid,
                    num_flatten_dims=2,
                    param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
                    bias_attr=name + '_fc_1.b_0')
W
wuzewu 已提交
165 166 167
    return out


W
wuzewu 已提交
168
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
W
wuzewu 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
            out_dtype = out.dtype
            if out_dtype == fluid.core.VarDesc.VarType.FP16:
                out = layers.cast(x=out, dtype="float32")
G
grasswolfs 已提交
182 183 184 185 186 187
            out = layers.layer_norm(out,
                                    begin_norm_axis=len(out.shape) - 1,
                                    param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
                                                               initializer=fluid.initializer.Constant(1.)),
                                    bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
                                                              initializer=fluid.initializer.Constant(0.)))
W
wuzewu 已提交
188 189 190 191
            if out_dtype == fluid.core.VarDesc.VarType.FP16:
                out = layers.cast(x=out, dtype="float16")
        elif cmd == "d":  # add dropout
            if dropout_rate:
G
grasswolfs 已提交
192 193 194 195
                out = layers.dropout(out,
                                     dropout_prob=dropout_rate,
                                     dropout_implementation="upscale_in_train",
                                     is_test=False)
W
wuzewu 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  hidden_act,
                  preprocess_cmd="n",
                  postprocess_cmd="da",
                  param_initializer=None,
                  name=''):
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
G
grasswolfs 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    attn_output = multi_head_attention(pre_process_layer(enc_input,
                                                         preprocess_cmd,
                                                         prepostprocess_dropout,
                                                         name=name + '_pre_att'),
                                       None,
                                       None,
                                       attn_bias,
                                       d_key,
                                       d_value,
                                       d_model,
                                       n_head,
                                       attention_dropout,
                                       param_initializer=param_initializer,
                                       name=name + '_multi_head_att')
    attn_output = post_process_layer(enc_input,
                                     attn_output,
                                     postprocess_cmd,
                                     prepostprocess_dropout,
                                     name=name + '_post_att')
    ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
                                                             preprocess_cmd,
                                                             prepostprocess_dropout,
                                                             name=name + '_pre_ffn'),
                                           d_inner_hid,
                                           d_model,
                                           relu_dropout,
                                           hidden_act,
                                           param_initializer=param_initializer,
                                           name=name + '_ffn')
W
wuzewu 已提交
253
    return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
W
wuzewu 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            hidden_act,
            preprocess_cmd="n",
            postprocess_cmd="da",
            param_initializer=None,
            name=''):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
G
grasswolfs 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        enc_output = encoder_layer(enc_input,
                                   attn_bias,
                                   n_head,
                                   d_key,
                                   d_value,
                                   d_model,
                                   d_inner_hid,
                                   prepostprocess_dropout,
                                   attention_dropout,
                                   relu_dropout,
                                   hidden_act,
                                   preprocess_cmd,
                                   postprocess_cmd,
                                   param_initializer=param_initializer,
                                   name=name + '_layer_' + str(i))
W
wuzewu 已提交
292
        enc_input = enc_output
W
wuzewu 已提交
293
    enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
W
wuzewu 已提交
294 295

    return enc_output