utils.py 10.0 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import os
import time


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--model_dir",
                        type=str,
                        default=None,
                        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
                              "'infer_cfg.yml', created by tools/export_model.py."),
                        required=True)
    parser.add_argument("--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument("--image_dir",
                        type=str,
                        default=None,
                        help="Dir of image file, `image_file` has a higher priority.")
    parser.add_argument("--batch_size", type=int, default=1, help="batch_size for inference.")
    parser.add_argument("--video_file",
                        type=str,
                        default=None,
                        help="Path of video file, `video_file` or `camera_id` has a highest priority.")
    parser.add_argument("--camera_id", type=int, default=-1, help="device id of camera to predict.")
    parser.add_argument("--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument("--output_dir", type=str, default="output", help="Directory of output visualization files.")
    parser.add_argument("--run_mode",
                        type=str,
                        default='paddle',
                        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
    parser.add_argument("--device",
                        type=str,
                        default='cpu',
                        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU.")
    parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Deprecated, please use `--device`.")
    parser.add_argument("--run_benchmark",
                        type=ast.literal_eval,
                        default=False,
                        help="Whether to predict a image_file repeatedly for benchmark")
    parser.add_argument("--enable_mkldnn", type=ast.literal_eval, default=False, help="Whether use mkldnn with CPU.")
    parser.add_argument("--enable_mkldnn_bfloat16",
                        type=ast.literal_eval,
                        default=False,
                        help="Whether use mkldnn bfloat16 inference with CPU.")
    parser.add_argument("--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument("--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument("--trt_max_shape", type=int, default=1280, help="max_shape for TensorRT.")
    parser.add_argument("--trt_opt_shape", type=int, default=640, help="opt_shape for TensorRT.")
    parser.add_argument("--trt_calib_mode",
                        type=bool,
                        default=False,
                        help="If the model is produced by TRT offline quantitative "
                        "calibration, trt_calib_mode need to set True.")
    parser.add_argument('--save_images', action='store_true', help='Save visualization image results.')
    parser.add_argument('--save_mot_txts', action='store_true', help='Save tracking results (txt).')
    parser.add_argument('--save_mot_txt_per_img',
                        action='store_true',
                        help='Save tracking results (txt) for each image.')
    parser.add_argument('--scaled',
                        type=bool,
                        default=False,
                        help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
                        "True in general detector.")
    parser.add_argument("--tracker_config", type=str, default=None, help=("tracker donfig"))
    parser.add_argument("--reid_model_dir",
                        type=str,
                        default=None,
                        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
                              "'infer_cfg.yml', created by tools/export_model.py."))
    parser.add_argument("--reid_batch_size", type=int, default=50, help="max batch_size for reid model inference.")
    parser.add_argument('--use_dark',
                        type=ast.literal_eval,
                        default=True,
                        help='whether to use darkpose to get better keypoint position predict ')
    parser.add_argument("--action_file", type=str, default=None, help="Path of input file for action recognition.")
    parser.add_argument("--window_size",
                        type=int,
                        default=50,
                        help="Temporal size of skeleton feature for action recognition.")
    parser.add_argument("--random_pad",
                        type=ast.literal_eval,
                        default=False,
                        help="Whether do random padding for action recognition.")
    parser.add_argument("--save_results",
                        type=bool,
                        default=False,
                        help="Whether save detection result to file using coco format")

    return parser


class Times(object):

    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):

    def __init__(self, with_tracker=False):
        super(Timer, self).__init__()
        self.with_tracker = with_tracker
        self.preprocess_time_s = Times()
        self.inference_time_s = Times()
        self.postprocess_time_s = Times()
        self.tracking_time_s = Times()
        self.img_num = 0

    def info(self, average=False):
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
            total_time = total_time + track_time
        total_time = round(total_time, 4)
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000, self.img_num))
        preprocess_time = round(pre_time / max(1, self.img_num), 4) if average else pre_time
        postprocess_time = round(post_time / max(1, self.img_num), 4) if average else post_time
        inference_time = round(infer_time / max(1, self.img_num), 4) if average else infer_time
        tracking_time = round(track_time / max(1, self.img_num), 4) if average else track_time

        average_latency = total_time / max(1, self.img_num)
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(average_latency * 1000, qps))
        if self.with_tracker:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}"
                .format(preprocess_time * 1000, inference_time * 1000, postprocess_time * 1000, tracking_time * 1000))
        else:
            print("preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".format(
                preprocess_time * 1000, inference_time * 1000, postprocess_time * 1000))

    def report(self, average=False):
        dic = {}
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num), 4) if average else pre_time
        dic['inference_time_s'] = round(infer_time / max(1, self.img_num), 4) if average else infer_time
        dic['postprocess_time_s'] = round(post_time / max(1, self.img_num), 4) if average else post_time
        dic['img_num'] = self.img_num
        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
            dic['tracking_time_s'] = round(track_time / max(1, self.img_num), 4) if average else track_time
            total_time = total_time + track_time
        dic['total_time_s'] = round(total_time, 4)
        return dic


def get_current_memory_mb():
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
    gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))

    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    gpus = GPUtil.getGPUs()
    if gpu_id is not None and len(gpus) > 0:
        gpu_percent = gpus[gpu_id].load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)