module.py 5.0 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
C
chenjian 已提交
16
import os
C
chenjian 已提交
17 18

import cv2
C
chenjian 已提交
19 20
import numpy as np
import paddle
C
chenjian 已提交
21
from ppgan.utils.config import get_config
C
chenjian 已提交
22 23 24
from skimage.io import imread
from skimage.transform import rescale
from skimage.transform import resize
C
chenjian 已提交
25

C
chenjian 已提交
26
import paddlehub as hub
C
chenjian 已提交
27 28
from .model import PhotoPenPredictor
from .util import base64_to_cv2
C
chenjian 已提交
29 30 31
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
C
chenjian 已提交
32 33 34 35 36 37 38 39 40 41 42


@moduleinfo(
    name="photopen", type="CV/style_transfer", author="paddlepaddle", author_email="", summary="", version="1.0.0")
class Photopen:
    def __init__(self):
        self.pretrained_model = os.path.join(self.directory, "photopen.pdparams")
        cfg = get_config(os.path.join(self.directory, "photopen.yaml"))
        self.network = PhotoPenPredictor(weight_path=self.pretrained_model, gen_cfg=cfg.predict)

    def photo_transfer(self,
C
chenjian 已提交
43 44 45 46 47
                       images: list = None,
                       paths: list = None,
                       output_dir: str = './transfer_result/',
                       use_gpu: bool = False,
                       visualization: bool = True):
C
chenjian 已提交
48 49 50
        '''
        images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR(read by cv2).
        paths (list[str]): paths to images
C
chenjian 已提交
51 52 53 54

        output_dir (str): the dir to save the results
        use_gpu (bool): if True, use gpu to perform the computation, otherwise cpu.
        visualization (bool): if True, save results in output_dir.
C
chenjian 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        '''
        results = []
        paddle.disable_static()
        place = 'gpu:0' if use_gpu else 'cpu'
        place = paddle.set_device(place)
        if images == None and paths == None:
            print('No image provided. Please input an image or a image path.')
            return

        if images != None:
            for image in images:
                image = image[:, :, ::-1]
                out = self.network.run(image)
                results.append(out)

        if paths != None:
            for path in paths:
                image = cv2.imread(path)[:, :, ::-1]
                out = self.network.run(image)
                results.append(out)

        if visualization == True:
            if not os.path.exists(output_dir):
                os.makedirs(output_dir, exist_ok=True)
            for i, out in enumerate(results):
                if out is not None:
                    cv2.imwrite(os.path.join(output_dir, 'output_{}.png'.format(i)), out[:, :, ::-1])

        return results

    @runnable
    def run_cmd(self, argvs: list):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)

        self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
        self.arg_config_group = self.parser.add_argument_group(
            title="Config options", description="Run configuration for controlling module behavior, not required.")
        self.add_module_config_arg()
        self.add_module_input_arg()
        self.args = self.parser.parse_args(argvs)
        results = self.photo_transfer(
            paths=[self.args.input_path],
            output_dir=self.args.output_dir,
            use_gpu=self.args.use_gpu,
            visualization=self.args.visualization)
        return results

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.photo_transfer(images=images_decode, **kwargs)
        tolist = [result.tolist() for result in results]
        return tolist

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not")

        self.arg_config_group.add_argument(
            '--output_dir', type=str, default='transfer_result', help='output directory for saving result.')
        self.arg_config_group.add_argument('--visualization', type=bool, default=False, help='save results or not.')

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
        self.arg_input_group.add_argument('--input_path', type=str, help="path to input image.")