embedding_pointwise_matching_predict.py 3.9 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fine-tuning on pointwise text matching task """

import argparse
import ast
import paddlehub as hub

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.")
parser.add_argument("--network", type=str, default=None, help="Pre-defined network which was connected after module.")
args = parser.parse_args()
# yapf: enable.

jieba_paddle = hub.Module(name='jieba_paddle')


def cut(text):
    res = jieba_paddle.cut(text, use_paddle=False)
    return res


if __name__ == '__main__':

    # Load Paddlehub word embedding pretrained model
    module = hub.Module(name="word2vec_skipgram")
    # module = hub.Module(name="simnet_bow")
    # module = hub.Module(name="tencent_ailab_chinese_embedding_small")

    # Pointwise task needs: query, title (2 slots)
    inputs, outputs, program = module.context(
        trainable=True, max_seq_len=args.max_seq_len, num_slots=2)

    # Tokenizer tokenizes the text data and encodes the data as model needed.
    # If you use transformer modules (ernie, bert, roberta and so on), tokenizer should be hub.BertTokenizer.
    # Otherwise, tokenizer should be hub.CustomTokenizer.
    # If you choose CustomTokenizer, you can also change the chinese word segmentation tool, for example jieba.
    tokenizer = hub.CustomTokenizer(
        vocab_file=module.get_vocab_path(),
        tokenize_chinese_chars=True,
        cut_function=cut,  # jieba.cut as cut function
    )

    dataset = hub.dataset.LCQMC(
        tokenizer=tokenizer, max_seq_len=args.max_seq_len)

    # Construct transfer learning network
    # Use token-level output.
    query = outputs["emb"]
    title = outputs['emb_2']

    # Select fine-tune strategy
    strategy = hub.DefaultStrategy(optimizer_name="sgd")

    # Setup RunConfig for PaddleHub Fine-tune API
    config = hub.RunConfig(
        use_data_parallel=False,
        use_cuda=False,
        batch_size=args.batch_size,
        checkpoint_dir=args.checkpoint_dir,
        strategy=strategy)

    # Define a text matching task by PaddleHub's API
    # network choice: bow, cnn, gru, lstm (PaddleHub pre-defined network)
    pointwise_matching_task = hub.PointwiseTextMatchingTask(
        dataset=dataset,
        query_feature=query,
        title_feature=title,
        tokenizer=tokenizer,
        network=args.network,
        config=config)

    # Prediction data sample.
    text_pairs = [
        [
            "请问不是您的账户吗?",  # query
            "您好,请问您使用的邮箱类型是?"  # title
        ],
        [
            "推荐个手机游戏",  # query
            "手机游戏推荐"  # title
        ]
    ]

    # Predict by PaddleHub's API
    results = pointwise_matching_task.predict(
        data=text_pairs,
        max_seq_len=args.max_seq_len,
        label_list=dataset.get_labels(),
        return_result=True,
        accelerate_mode=True)
    for index, text in enumerate(text_pairs):
        print("data: %s, preidction_label: %s" % (text, results[index]))