text_classifier.py 8.6 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
Zeyu Chen 已提交
15
"""Finetuning on classification task """
16 17

import argparse
18
import ast
19
import paddle.fluid as fluid
W
wuzewu 已提交
20
import paddlehub as hub
21 22 23 24

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
25 26
parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for finetuning, input should be True or False")
parser.add_argument("--dataset", type=str, default="chnsenticorp", help="The choice of dataset")
27 28
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
K
kinghuin 已提交
29
parser.add_argument("--warmup_proportion", type=float, default=0.0, help="Warmup proportion params for warmup strategy")
30 31 32 33
parser.add_argument("--data_dir", type=str, default=None, help="Path to training data.")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.")
W
wuzewu 已提交
34 35
parser.add_argument("--use_pyreader", type=ast.literal_eval, default=False, help="Whether use pyreader to feed data.")
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
36
parser.add_argument("--use_taskid", type=ast.literal_eval, default=False, help="Whether to use taskid ,if yes to use ernie v2.")
37 38 39 40
args = parser.parse_args()
# yapf: enable.

if __name__ == '__main__':
Z
Zeyu Chen 已提交
41
    dataset = None
K
kinghuin 已提交
42
    metrics_choices = []
K
kinghuin 已提交
43
    # Download dataset and use ClassifyReader to read dataset
Z
Zeyu Chen 已提交
44
    if args.dataset.lower() == "chnsenticorp":
Z
Zeyu Chen 已提交
45
        dataset = hub.dataset.ChnSentiCorp()
K
kinghuin 已提交
46
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
K
kinghuin 已提交
47
        metrics_choices = ["acc"]
S
Steffy-zxf 已提交
48 49
    elif args.dataset.lower() == "tnews":
        dataset = hub.dataset.TNews()
K
kinghuin 已提交
50
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
S
Steffy-zxf 已提交
51
        metrics_choices = ["acc", "f1"]
Z
Zeyu Chen 已提交
52 53
    elif args.dataset.lower() == "nlpcc_dbqa":
        dataset = hub.dataset.NLPCC_DBQA()
K
kinghuin 已提交
54
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
K
kinghuin 已提交
55
        metrics_choices = ["acc"]
Z
Zeyu Chen 已提交
56 57
    elif args.dataset.lower() == "lcqmc":
        dataset = hub.dataset.LCQMC()
K
kinghuin 已提交
58
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
K
kinghuin 已提交
59
        metrics_choices = ["acc"]
K
kinghuin 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    elif args.dataset.lower() == 'inews':
        dataset = hub.dataset.INews()
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
        metrics_choices = ["acc", "f1"]
    elif args.dataset.lower() == 'bq':
        dataset = hub.dataset.BQ()
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
        metrics_choices = ["acc", "f1"]
    elif args.dataset.lower() == 'thucnews':
        dataset = hub.dataset.THUCNEWS()
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
        metrics_choices = ["acc", "f1"]
    elif args.dataset.lower() == 'iflytek':
        dataset = hub.dataset.IFLYTEK()
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
        metrics_choices = ["acc", "f1"]
K
kinghuin 已提交
76 77
    elif args.dataset.lower() == "mrpc":
        dataset = hub.dataset.GLUE("MRPC")
78 79 80 81
        if args.use_taskid:
            module = hub.Module(name="ernie_v2_eng_base")
        else:
            module = hub.Module(name="bert_uncased_L-12_H-768_A-12")
K
kinghuin 已提交
82 83
        metrics_choices = ["f1", "acc"]
    # The first metric will be choose to eval. Ref: task.py:799
K
kinghuin 已提交
84 85
    elif args.dataset.lower() == "qqp":
        dataset = hub.dataset.GLUE("QQP")
86 87 88 89
        if args.use_taskid:
            module = hub.Module(name="ernie_v2_eng_base")
        else:
            module = hub.Module(name="bert_uncased_L-12_H-768_A-12")
K
kinghuin 已提交
90
        metrics_choices = ["f1", "acc"]
K
kinghuin 已提交
91 92
    elif args.dataset.lower() == "sst-2":
        dataset = hub.dataset.GLUE("SST-2")
93 94 95 96
        if args.use_taskid:
            module = hub.Module(name="ernie_v2_eng_base")
        else:
            module = hub.Module(name="bert_uncased_L-12_H-768_A-12")
K
kinghuin 已提交
97
        metrics_choices = ["acc"]
K
kinghuin 已提交
98 99
    elif args.dataset.lower() == "cola":
        dataset = hub.dataset.GLUE("CoLA")
100 101 102 103
        if args.use_taskid:
            module = hub.Module(name="ernie_v2_eng_base")
        else:
            module = hub.Module(name="bert_uncased_L-12_H-768_A-12")
K
kinghuin 已提交
104
        metrics_choices = ["matthews", "acc"]
K
kinghuin 已提交
105 106
    elif args.dataset.lower() == "qnli":
        dataset = hub.dataset.GLUE("QNLI")
107 108 109 110
        if args.use_taskid:
            module = hub.Module(name="ernie_v2_eng_base")
        else:
            module = hub.Module(name="bert_uncased_L-12_H-768_A-12")
K
kinghuin 已提交
111
        metrics_choices = ["acc"]
K
kinghuin 已提交
112 113
    elif args.dataset.lower() == "rte":
        dataset = hub.dataset.GLUE("RTE")
114 115 116 117
        if args.use_taskid:
            module = hub.Module(name="ernie_v2_eng_base")
        else:
            module = hub.Module(name="bert_uncased_L-12_H-768_A-12")
K
kinghuin 已提交
118 119 120
        metrics_choices = ["acc"]
    elif args.dataset.lower() == "mnli" or args.dataset.lower() == "mnli":
        dataset = hub.dataset.GLUE("MNLI_m")
121 122 123 124
        if args.use_taskid:
            module = hub.Module(name="ernie_v2_eng_base")
        else:
            module = hub.Module(name="bert_uncased_L-12_H-768_A-12")
K
kinghuin 已提交
125 126 127 128 129 130 131 132
        metrics_choices = ["acc"]
    elif args.dataset.lower() == "mnli_mm":
        dataset = hub.dataset.GLUE("MNLI_mm")
        if args.use_taskid:
            module = hub.Module(name="ernie_v2_eng_base")
        else:
            module = hub.Module(name="bert_uncased_L-12_H-768_A-12")
        metrics_choices = ["acc"]
K
kinghuin 已提交
133 134
    elif args.dataset.lower().startswith("xnli"):
        dataset = hub.dataset.XNLI(language=args.dataset.lower()[-2:])
K
kinghuin 已提交
135
        module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16")
K
kinghuin 已提交
136
        metrics_choices = ["acc"]
Z
Zeyu Chen 已提交
137 138 139
    else:
        raise ValueError("%s dataset is not defined" % args.dataset)

K
kinghuin 已提交
140 141 142 143 144
    support_metrics = ["acc", "f1", "matthews"]
    for metric in metrics_choices:
        if metric not in support_metrics:
            raise ValueError("\"%s\" metric is not defined" % metric)

K
kinghuin 已提交
145 146
    inputs, outputs, program = module.context(
        trainable=True, max_seq_len=args.max_seq_len)
147
    reader = hub.reader.ClassifyReader(
Z
Zeyu Chen 已提交
148
        dataset=dataset,
149
        vocab_path=module.get_vocab_path(),
150 151
        max_seq_len=args.max_seq_len,
        use_task_id=args.use_taskid)
152

153
    # Construct transfer learning network
W
wuzewu 已提交
154 155 156
    # Use "pooled_output" for classification tasks on an entire sentence.
    # Use "sequence_output" for token-level output.
    pooled_output = outputs["pooled_output"]
157

W
wuzewu 已提交
158
    # Setup feed list for data feeder
K
kinghuin 已提交
159
    # Must feed all the tensor of module need
W
wuzewu 已提交
160
    feed_list = [
161 162 163 164
        inputs["input_ids"].name,
        inputs["position_ids"].name,
        inputs["segment_ids"].name,
        inputs["input_mask"].name,
W
wuzewu 已提交
165
    ]
166

167
    if args.use_taskid:
K
kinghuin 已提交
168
        feed_list.append(inputs["task_ids"].name)
Z
zhangxuefei 已提交
169

170
    # Select finetune strategy, setup config and finetune
W
wuzewu 已提交
171 172 173
    strategy = hub.AdamWeightDecayStrategy(
        weight_decay=args.weight_decay,
        learning_rate=args.learning_rate,
174
        lr_scheduler="linear_decay")
Z
Zeyu Chen 已提交
175

W
wuzewu 已提交
176 177
    # Setup runing config for PaddleHub Finetune API
    config = hub.RunConfig(
W
wuzewu 已提交
178 179
        use_data_parallel=args.use_data_parallel,
        use_pyreader=args.use_pyreader,
W
wuzewu 已提交
180 181 182 183 184
        use_cuda=args.use_gpu,
        num_epoch=args.num_epoch,
        batch_size=args.batch_size,
        checkpoint_dir=args.checkpoint_dir,
        strategy=strategy)
Z
Zeyu Chen 已提交
185

186 187 188 189 190 191
    # Define a classfication finetune task by PaddleHub's API
    cls_task = hub.TextClassifierTask(
        data_reader=reader,
        feature=pooled_output,
        feed_list=feed_list,
        num_classes=dataset.num_labels,
K
kinghuin 已提交
192 193
        config=config,
        metrics_choices=metrics_choices)
194

W
wuzewu 已提交
195 196
    # Finetune and evaluate by PaddleHub's API
    # will finish training, evaluation, testing, save model automatically
197
    cls_task.finetune_and_eval()