README.md 14.4 KB
Newer Older
G
grasswolfs 已提交
1
English | [简体中文](README_ch.md)
W
wuzewu 已提交
2

C
chunzhang-hub 已提交
3 4
<p align="center">
 <img src="./docs/imgs/paddlehub_logo.jpg" align="middle"
Z
Zeyu Chen 已提交
5 6
</p>

G
grasswolfs 已提交
7

Z
Zeyu Chen 已提交
8 9
------------------------------------------------------------------------------------------

W
wuzewu 已提交
10
[![License](https://img.shields.io/badge/license-Apache%202-red.svg)](LICENSE)
Z
Zeyu Chen 已提交
11
[![Version](https://img.shields.io/github/release/PaddlePaddle/PaddleHub.svg)](https://github.com/PaddlePaddle/PaddleHub/releases)
W
wuzewu 已提交
12 13
![python version](https://img.shields.io/badge/python-3.6+-orange.svg)
![support os](https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-yellow.svg)
W
wuzewu 已提交
14

G
grasswolfs 已提交
15 16
## Introduction
- PaddleHub aims to provide developers with rich, high-quality, and directly usable pre-trained models.
Z
Zeyu Chen 已提交
17
- **No need for deep learning background**,you can use AI models quickly and enjoy the dividends of the artificial intelligence era.
Z
Zeyu Chen 已提交
18
- Covers 4 major categories of CV, NLP, Audio, and Video, and supports **one-click prediction**, **one-click service deployment** and **transfer learning**
Z
Zeyu Chen 已提交
19
- All models are **OPEN SOURCE**, **FREE** for download and use in offline scenario.
Z
Zeyu Chen 已提交
20

Z
Zeyu Chen 已提交
21 22 23 24 25 26 27
### Recent updates
- **2020.12.1:** Release 2.0-beta1 version, migrate ERNIE, RoBERTa, BERT to dynamic graph mode. Add text classification fine-tune task based on large-scale pre-trained models.
- **2020.11.20:** Release 2.0-beta version, fully migrate the dynamic graph programming mode, and upgrade the service deployment Serving capability; add 1 hand key point detection model, 12 image animation models, 3 image editing models, 3 speech synthesis models, syntax Analyzing one, the total number of pre-trained models reaches **【182】**.
- **2020.10.09:** Added 4 new OCR multi-language series models, 4 image editing models, and the total number of pre-trained models reached **【162】**.
- **2020.09.27:** 6 new text generation models and 1 image segmentation model were added, and the total number of pre-trained models reached **【154】**.
- **2020.08.13:** Released v1.8.1, added a segmentation model, and supports EMNLP2019-Sentence-BERT as a text matching task network. The total number of pre-training models reaches **【147】**.
- **2020.07.29:** Release v1.8.0, new AI couplets and AI writing poems, jieba word segmentation, LDA topic model, semantic similarity calculation, new target detection, short video classification model, ultra-lightweight Chinese and English OCR, new pedestrian detection, vehicle industrial-grade models such as detection and animal recognition support [VisualDL](https://github.com/PaddlePaddle/VisualDL) visualization training, and the total number of pre-training models reaches **【135】**.
G
grasswolfs 已提交
28 29


G
grasswolfs 已提交
30
## Features
Z
Zeyu Chen 已提交
31 32
- **Abundant Pre-trained Models**: 180+ pre-trained models covering the four major categories of CV, NLP, Audio, and Video, all open source and free for download and offline usage.
- **Quick Model Prediction**: Model prediction can be realized through a few lines of scripts to quickly experience the model effect.
Z
Zeyu Chen 已提交
33
- **Model As Service**: A one-line command to build deep learning model API service deployment capabilities.
Z
Zeyu Chen 已提交
34
- **Easy-to-use Transfer Learning**: Just few lines of code you can complete the transfer-learning task like image classification and text classification based on high quality pre-trained models.
Z
Zeyu Chen 已提交
35
- **Cross-platform**: Can run on Linux, Windows, MacOS and other operating systems.
D
Daniel Yang 已提交
36

Z
Zeyu Chen 已提交
37 38
## Visualization Demo

Z
Zeyu Chen 已提交
39
### Text Recognition
G
grasswolfs 已提交
40
- Contain ultra-lightweight Chinese and English OCR models, high-precision Chinese and English, multilingual German, French, Japanese, Korean OCR recognition.
G
grasswolfs 已提交
41
- Many thanks to CopyRight@[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) for the pre-trained models, you can try to train your models with PadddleOCR.
G
grasswolfs 已提交
42
<div align="center">
G
grasswolfs 已提交
43
<img src="./docs/imgs/Readme_Related/Image_Ocr.gif"  width = "800" height = "400" />
G
grasswolfs 已提交
44
</div>
G
grasswolfs 已提交
45

G
grasswolfs 已提交
46 47
### Face Detection
- Including face detection, mask face detection, multiple algorithms are optional.
G
grasswolfs 已提交
48
- Many thanks to CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) for the pre-trained models, you can try to train your models with PadddleDetection.
G
grasswolfs 已提交
49
<div align="center">
G
grasswolfs 已提交
50
<img src="./docs/imgs/Readme_Related/Image_ObjectDetection_Face_Mask.gif"  width = "588" height = "400" />
G
grasswolfs 已提交
51
</div>
G
grasswolfs 已提交
52

Z
Zeyu Chen 已提交
53
### Image Editing
Z
Zeyu Chen 已提交
54
- 4x super resolution effect, multiple super resolution models are optional.
H
haoyuying 已提交
55
- Colorization models can be used to repair old grayscale photos.
G
grasswolfs 已提交
56
- Many thanks to CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) for the pre-trained models, you can try to train your models with PadddleGAN.
G
grasswolfs 已提交
57
<div align="center">
G
grasswolfs 已提交
58 59 60 61 62
<table>
    <thead>
    </thead>
    <tbody>
        <tr>
G
grasswolfs 已提交
63 64
            <th>SuperResolution </th>
            <th>Restoration </th>
G
grasswolfs 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
        </tr>
        <tr>
            <th>
            <a>
            <img src="./docs/imgs/Readme_Related/ImageEdit_SuperResolution.gif"  width = "266" height = "400" /></a><br>
            </th>
            <th>
            <a>
            <img src="./docs/imgs/Readme_Related/ImageEdit_Restoration.gif"  width = "300" height = "400" /></a><br>
            </th>
        </tr>
    </tbody>
</table>
G
grasswolfs 已提交
78
</div>
G
grasswolfs 已提交
79

G
grasswolfs 已提交
80
### Object Detection
Z
Zeyu Chen 已提交
81
- Pedestrian detection, vehicle detection, and more industrial-grade ultra-large-scale pretrained models are provided.
G
grasswolfs 已提交
82
- Many thanks to CopyRight@[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) for the pre-trained models, you can try to train your models with PadddleDetection.
G
grasswolfs 已提交
83
<div align="center">
G
grasswolfs 已提交
84
<img src="./docs/imgs/Readme_Related/Image_ObjectDetection_Pedestrian_Vehicle.gif"  width = "642" height = "400" />
G
grasswolfs 已提交
85
</div>
G
grasswolfs 已提交
86

G
grasswolfs 已提交
87
### Key Point Detection
G
grasswolfs 已提交
88
- Support body, face and hands key point detection for single or multiple person.
G
grasswolfs 已提交
89
- Many thanks to CopyRight@[openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) for the pre-trained models.
G
grasswolfs 已提交
90
<div align="center">
G
grasswolfs 已提交
91
<img src="./docs/imgs/Readme_Related/Image_keypoint.gif"  width = "458" height = "400" />
G
grasswolfs 已提交
92
</div>
G
grasswolfs 已提交
93

G
grasswolfs 已提交
94
### Image Segmentation
Z
Zeyu Chen 已提交
95
- High quality pixel-level portrait cutout model, ACE2P human body analysis world champion models are provided.
G
grasswolfs 已提交
96
- Many thanks to CopyRight@[PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg) for the pre-trained models, you can try to train your models with PadddleSeg.
G
grasswolfs 已提交
97
<div align="center">
G
grasswolfs 已提交
98
<img src="./docs/imgs/Readme_Related/ImageSeg_Human.gif"  width = "642" height = "400" />
G
grasswolfs 已提交
99
</div>
G
grasswolfs 已提交
100

G
grasswolfs 已提交
101
### Image Animation
G
grasswolfs 已提交
102 103
- Image style transfer models with Hayao Miyazaki and Makoto Shinkai styles, etc are provided.
- Many thanks to CopyRight@[AnimeGANv2](https://github.com/TachibanaYoshino/AnimeGANv2) for the pre-trained models.
G
grasswolfs 已提交
104
<div align="center">
D
Daniel Yang 已提交
105
<img src="./docs/imgs/Readme_Related/ImageGan_Anime.gif"  width = "642" height = "400" />
G
grasswolfs 已提交
106
</div>
G
grasswolfs 已提交
107

G
grasswolfs 已提交
108
### Image Classification
Z
Zeyu Chen 已提交
109
- Various models like animal classification, dish classification, wild animal product classification are available.
G
grasswolfs 已提交
110
- Many thanks to CopyRight@[PaddleClas](https://github.com/PaddlePaddle/PaddleClas) for the pre-trained models, you can try to train your models with PadddleClas.
G
grasswolfs 已提交
111
<div align="center">
G
grasswolfs 已提交
112
<img src="./docs/imgs/Readme_Related/ImageClas_animal_dish_wild.gif"  width = "530" height = "400" />
G
grasswolfs 已提交
113
</div>
G
grasswolfs 已提交
114

Z
Zeyu Chen 已提交
115
### Text Generation
Z
Zeyu Chen 已提交
116
- AI poem writing, AI couplets, AI love words generation models are available.
G
grasswolfs 已提交
117
- Many thanks to CopyRight@[ERNIE](https://github.com/PaddlePaddle/ERNIE) for the pre-trained models, you can try to train your models with ERNIE.
G
grasswolfs 已提交
118
<div align="center">
G
grasswolfs 已提交
119
<img src="./docs/imgs/Readme_Related/Text_Textgen_poetry.gif"  width = "850" height = "400" />
G
grasswolfs 已提交
120
</div>
G
grasswolfs 已提交
121

Z
Zeyu Chen 已提交
122
### Lexical Analysis
G
grasswolfs 已提交
123
- Excelent Chinese text segmentation, part-of-speech, named entity recognition model are provided by [LAC](https://github.com/baidu/LAC)@Baidu NLP.
Z
Zeyu Chen 已提交
124 125 126 127
<div align="center">
<img src="./docs/imgs/Readme_Related/Text_Lexical Analysis.png"  width = "640" height = "233" />
</div>

Z
Zeyu Chen 已提交
128
### Syntactic Analysis
G
grasswolfs 已提交
129
- Leading Chinese syntactic analysis model are provided by [DDParser](https://github.com/baidu/DDParser)@Baidu NLP.
G
grasswolfs 已提交
130
<div align="center">
G
grasswolfs 已提交
131
<img src="./docs/imgs/Readme_Related/Text_SyntacticAnalysis.png"  width = "640" height = "301" />
G
grasswolfs 已提交
132
</div>
G
grasswolfs 已提交
133

Z
Zeyu Chen 已提交
134
### Sentiment Analysis
Z
Zeyu Chen 已提交
135
- All SOTA Chinese sentiment analysis model released by Baidu NLP can be used just one-line of code.
G
grasswolfs 已提交
136
<div align="center">
G
grasswolfs 已提交
137
<img src="./docs/imgs/Readme_Related/Text_SentimentAnalysis.png"  width = "640" height = "228" />
G
grasswolfs 已提交
138
</div>
G
grasswolfs 已提交
139

G
grasswolfs 已提交
140
### Text Review
Z
Zeyu Chen 已提交
141
- Text review model of Chinese pornographic text are available.
G
grasswolfs 已提交
142
<div align="center">
G
grasswolfs 已提交
143
<img src="./docs/imgs/Readme_Related/Text_Textreview.png"  width = "640" height = "140" />
G
grasswolfs 已提交
144
</div>
G
grasswolfs 已提交
145

G
grasswolfs 已提交
146
### Speech Synthesis
G
grasswolfs 已提交
147 148
- TTS speech synthesis algorithm, multiple algorithms are available.
- Many thanks to CopyRight@[Parakeet](https://github.com/PaddlePaddle/Parakeet) for the pre-trained models, you can try to train your models with Parakeet.
G
grasswolfs 已提交
149 150
- Input: `Life was like a box of chocolates, you never know what you're gonna get.`
- The synthesis effect is as follows:
G
grasswolfs 已提交
151 152 153 154 155 156 157 158
<div align="center">
<table>
    <thead>
    </thead>
    <tbody>
        <tr>
            <th>deepvoice3 </th>
            <th>fastspeech </th>
G
grasswolfs 已提交
159
            <th>transformer</th>
G
grasswolfs 已提交
160 161 162
        </tr>
        <tr>
            <th>
G
grasswolfs 已提交
163
            <a href="https://paddlehub.bj.bcebos.com/resources/deepvoice3_ljspeech-0.wav">
G
grasswolfs 已提交
164 165 166
            <img src="./docs/imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
            </th>
            <th>
G
grasswolfs 已提交
167
            <a href="https://paddlehub.bj.bcebos.com/resources/fastspeech_ljspeech-0.wav">
G
grasswolfs 已提交
168 169 170
            <img src="./docs/imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
            </th>
            <th>
G
grasswolfs 已提交
171
            <a href="https://paddlehub.bj.bcebos.com/resources/transformer_tts_ljspeech-0.wav">
G
grasswolfs 已提交
172 173 174 175 176 177
            <img src="./docs/imgs/Readme_Related/audio_icon.png" width=250 /></a><br>
            </th>
        </tr>
    </tbody>
</table>
</div>
G
grasswolfs 已提交
178

G
grasswolfs 已提交
179
### Video Classification
G
grasswolfs 已提交
180
- Short video classification trained via large-scale video datasets, supports 3000+ tag types prediction for short Form Videos.
G
grasswolfs 已提交
181
- Many thanks to CopyRight@[PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo) for the pre-trained model, you can try to train your models with PaddleVideo.
G
grasswolfs 已提交
182
- `Example: Input a short video of swimming, the algorithm can output the result of "swimming"`
G
grasswolfs 已提交
183
<div align="center">
G
grasswolfs 已提交
184
<img src="./docs/imgs/Readme_Related/Text_Video.gif"  width = "400" height = "400" />
G
grasswolfs 已提交
185
</div>
G
grasswolfs 已提交
186

Z
Zeyu Chen 已提交
187 188
## ===**Key Points**===
- All the above pre-trained models are all open source and free, and the number of models is continuously updated. Welcome **⭐Star⭐** to pay attention.
G
grasswolfs 已提交
189
<div align="center">
G
grasswolfs 已提交
190
<a href="https://github.com/PaddlePaddle/PaddleHub/stargazers">
Z
Zeyu Chen 已提交
191
    <img src="./docs/imgs/Readme_Related/star_en.png"  width = "411" height = "100" /></a>  
G
grasswolfs 已提交
192 193
</div>

G
grasswolfs 已提交
194
<a name="Welcome_joinus"></a>
Z
Zeyu Chen 已提交
195

G
grasswolfs 已提交
196
## Welcome to join PaddleHub technical group
Z
Zeyu Chen 已提交
197 198

If you have any questions during the use of the model, you can join the official WeChat group to get more efficient questions and answers, and fully communicate with developers from all walks of life. We look forward to your joining.
G
grasswolfs 已提交
199 200 201
<div align="center">
<img src="./docs/imgs/joinus.PNG"  width = "200" height = "200" />
</div>  
G
grasswolfs 已提交
202 203 204 205 206 207 208
If you fail to scan the code, please add WeChat 15711058002 and note "Hub", the operating class will invite you to join the group.

## Documentation Tutorial
- [PIP Installation](./docs/docs_en/installation_en.md)
- Quick Start
    - [Command Line](./docs/docs_en/quick_experience/cmd_quick_run_en.md)
    - [Python API](./docs/docs_en/quick_experience/python_use_hub_en.md)
Z
Zeyu Chen 已提交
209
    - [More Demos](./docs/docs_en/quick_experience/more_demos_en.md)
G
grasswolfs 已提交
210 211
- Rich Pre-trained Models 182
    - [Boutique Featured Models](./docs/docs_en/figures_en.md)
Z
Zeyu Chen 已提交
212
    - Computer Vision 126
G
grasswolfs 已提交
213 214 215 216 217 218 219 220
      - [Image Classification 64 ](./modules/image/classification/README_en.md)
      - [Object Detection 13 ](./modules/image/object_detection/README_en.md)
      - [Face Detection 7 ](./modules/image/face_detection/README_en.md)  
      - [Key Point Detection 3 ](./modules/image/keypoint_detection/README_en.md)
      - [Image Segmentation 7 ](./modules/image/semantic_segmentation/README_en.md)
      - [Text Recognition 8 ](./modules/image/text_recognition/README_en.md)
      - [Image Generation 17 ](./modules/image/Image_gan/README_en.md)
      - [Image Editing 7 ](./modules/image/Image_editing/README_en.md)
Z
Zeyu Chen 已提交
221
    - Natural Language Processing 48
G
grasswolfs 已提交
222
      - [Lexical Analysis 2 ](./modules/text/lexical_analysis/README_en.md)
Z
Zeyu Chen 已提交
223
      - [Syntactic Analysis 1 ](./modules/text/syntactic_analysis/README_en.md)
Z
Zeyu Chen 已提交
224
      - [Sentiment Analysis 7 ](./modules/text/sentiment_analysis/README_en.md)
G
grasswolfs 已提交
225 226 227 228 229 230 231 232 233 234
      - [Text Review 3 ](./modules/text/text_review/README_en.md)
      - [Text Generation 9 ](./modules/text/text_generation/README_en.md)
      - [Semantic Models 26 ](./modules/text/language_model/README_en.md)
    - Audio 3
      - [Speech Synthesis 3 ](./modules/audio/README_en.md)
    - Video 5
      - [Video Classification 5 ](./modules/video/README_en.md)
- Deploy
    - [Local Inference Deployment](./docs/docs_en/quick_experience/python_use_hub_en.md)
    - [One Line of Code Service deployment](./docs/docs_en/tutorial/serving_en.md)
Z
Zeyu Chen 已提交
235
    - [Mobile Device Deployment](https://paddle-lite.readthedocs.io/zh/latest/quick_start/tutorial.html)
G
grasswolfs 已提交
236
- Advanced documentation
Z
Zeyu Chen 已提交
237 238
    - [Command Line Interface Usage](./docs/docs_en/tutorial/cmdintro_en.md)
    - [How to Load Customized Dataset](./docs/docs_en/tutorial/how_to_load_data_en.md)
G
grasswolfs 已提交
239
- Community
Z
Zeyu Chen 已提交
240 241 242
    - [Join Technical Group](#Welcome_joinus)
    - [Contribute Pre-trained Models](./docs/docs_en/contribution/contri_pretrained_model_en.md)
    - [Contribute Code](./docs/docs_en/contribution/contri_pr_en.md)
G
grasswolfs 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
- [License](#License)
- [Contribution](#Contribution)

<a name="License"></a>
## License
The release of this project is certified by the <a href="./LICENSE">Apache 2.0 license</a>.

<a name="Contribution"></a>
## Contribution
We welcome you to contribute code to PaddleHub, and thank you for your feedback.

* Many thanks to [Austendeng](https://github.com/Austendeng) for fixing the SequenceLabelReader
* Many thanks to [cclauss](https://github.com/cclauss) optimizing travis-ci check
* Many thanks to [奇想天外](http://www.cheerthink.com/),Contributed a demo of mask detection
* Many thanks to [mhlwsk](https://github.com/mhlwsk),Contributed the repair sequence annotation prediction demo
* Many thanks to [zbp-xxxp](https://github.com/zbp-xxxp),Contributed modules for viewing pictures and writing poems
* Many thanks to [zbp-xxxp](https://github.com/zbp-xxxp) and [七年期限](https://github.com/1084667371),Jointly contributed to the Mid-Autumn Festival Special Edition Module
* Many thanks to [livingbody](https://github.com/livingbody),Contributed models for style transfer based on PaddleHub's capabilities and Mid-Autumn Festival WeChat Mini Program