layers.py 8.4 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
# -*- coding:utf-8 -*-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import warnings

import paddle.fluid as fluid


def initial_type(name,
                 input,
                 op_type,
                 fan_out,
                 init="google",
                 use_bias=False,
                 filter_size=0,
                 stddev=0.02):
    if init == "kaiming":
        if op_type == 'conv':
            fan_in = input.shape[1] * filter_size * filter_size
        elif op_type == 'deconv':
            fan_in = fan_out * filter_size * filter_size
        else:
            if len(input.shape) > 2:
                fan_in = input.shape[1] * input.shape[2] * input.shape[3]
            else:
                fan_in = input.shape[1]
        bound = 1 / math.sqrt(fan_in)
        param_attr = fluid.ParamAttr(
            name=name + "_weights",
            initializer=fluid.initializer.Uniform(low=-bound, high=bound))
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + '_offset',
                initializer=fluid.initializer.Uniform(low=-bound, high=bound))
        else:
            bias_attr = False
    elif init == 'google':
        n = filter_size * filter_size * fan_out
        param_attr = fluid.ParamAttr(
            name=name + "_weights",
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=math.sqrt(2.0 / n)))
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + "_offset",
                initializer=fluid.initializer.Constant(0.0))
        else:
            bias_attr = False

    else:
        param_attr = fluid.ParamAttr(
            name=name + "_weights",
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=stddev))
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + "_offset",
                initializer=fluid.initializer.Constant(0.0))
        else:
            bias_attr = False
    return param_attr, bias_attr


def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


def init_batch_norm_layer(name="batch_norm"):
    param_attr = fluid.ParamAttr(
        name=name + '_scale', initializer=fluid.initializer.Constant(1.0))
    bias_attr = fluid.ParamAttr(
        name=name + '_offset',
        initializer=fluid.initializer.Constant(value=0.0))
    return param_attr, bias_attr


def init_fc_layer(fout, name='fc'):
    n = fout  # fan-out
    init_range = 1.0 / math.sqrt(n)

    param_attr = fluid.ParamAttr(
        name=name + '_weights',
        initializer=fluid.initializer.UniformInitializer(
            low=-init_range, high=init_range))
    bias_attr = fluid.ParamAttr(
        name=name + '_offset',
        initializer=fluid.initializer.Constant(value=0.0))
    return param_attr, bias_attr


def norm_layer(input, norm_type='batch_norm', name=None):
    if norm_type == 'batch_norm':
        param_attr = fluid.ParamAttr(
            name=name + '_weights', initializer=fluid.initializer.Constant(1.0))
        bias_attr = fluid.ParamAttr(
            name=name + '_offset',
            initializer=fluid.initializer.Constant(value=0.0))
        return fluid.layers.batch_norm(
            input,
            param_attr=param_attr,
            bias_attr=bias_attr,
            moving_mean_name=name + '_mean',
            moving_variance_name=name + '_variance')

    elif norm_type == 'instance_norm':
        helper = fluid.layer_helper.LayerHelper("instance_norm", **locals())
        dtype = helper.input_dtype()
        epsilon = 1e-5
        mean = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True)
        var = fluid.layers.reduce_mean(
            fluid.layers.square(input - mean), dim=[2, 3], keep_dim=True)
        if name is not None:
            scale_name = name + "_scale"
            offset_name = name + "_offset"
        scale_param = fluid.ParamAttr(
            name=scale_name,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        offset_param = fluid.ParamAttr(
            name=offset_name,
            initializer=fluid.initializer.Constant(0.0),
            trainable=True)
        scale = helper.create_parameter(
            attr=scale_param, shape=input.shape[1:2], dtype=dtype)
        offset = helper.create_parameter(
            attr=offset_param, shape=input.shape[1:2], dtype=dtype)

        tmp = fluid.layers.elementwise_mul(x=(input - mean), y=scale, axis=1)
        tmp = tmp / fluid.layers.sqrt(var + epsilon)
        tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
        return tmp
    else:
        raise NotImplementedError("norm tyoe: [%s] is not support" % norm_type)


def conv2d(input,
           num_filters=64,
           filter_size=7,
           stride=1,
           stddev=0.02,
           padding=0,
           groups=None,
           name="conv2d",
           norm=None,
           act=None,
           relufactor=0.0,
           use_bias=False,
           padding_type=None,
           initial="normal",
           use_cudnn=True):

    if padding != 0 and padding_type != None:
        warnings.warn(
            'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
        )

    param_attr, bias_attr = initial_type(
        name=name,
        input=input,
        op_type='conv',
        fan_out=num_filters,
        init=initial,
        use_bias=use_bias,
        filter_size=filter_size,
        stddev=stddev)

    def get_padding(filter_size, stride=1, dilation=1):
        padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
        return padding

    need_crop = False
    if padding_type == "SAME":
        top_padding, bottom_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
        left_padding, right_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
        height_padding = bottom_padding
        width_padding = right_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            height_padding = top_padding + stride
            width_padding = left_padding + stride
            need_crop = True
        padding = [height_padding, width_padding]
    elif padding_type == "VALID":
        height_padding = 0
        width_padding = 0
        padding = [height_padding, width_padding]
    elif padding_type == "DYNAMIC":
        padding = get_padding(filter_size, stride)
    else:
        padding = padding

    conv = fluid.layers.conv2d(
        input,
        num_filters,
        filter_size,
        groups=groups,
        name=name,
        stride=stride,
        padding=padding,
        use_cudnn=use_cudnn,
        param_attr=param_attr,
        bias_attr=bias_attr)

    if need_crop:
        conv = conv[:, :, 1:, 1:]

    if norm is not None:
        conv = norm_layer(input=conv, norm_type=norm, name=name + "_norm")
    if act == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif act == 'leaky_relu':
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif act == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
    elif act == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
    elif act == 'swish':
        conv = fluid.layers.swish(conv, name=name + '_swish')
    elif act == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" % act)

    return conv