module.py 12.1 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# coding=utf-8
from __future__ import absolute_import

import ast
import argparse
import os
from functools import partial

import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
14
from paddlehub.common.paddle_helper import add_vars_prefix
W
wuzewu 已提交
15 16

from yolov3_darknet53_pedestrian.darknet import DarkNet
17 18 19
from yolov3_darknet53_pedestrian.processor import load_label_info, postprocess, base64_to_cv2
from yolov3_darknet53_pedestrian.data_feed import reader
from yolov3_darknet53_pedestrian.yolo_head import MultiClassNMS, YOLOv3Head
W
wuzewu 已提交
20 21 22 23


@moduleinfo(
    name="yolov3_darknet53_pedestrian",
W
wuzewu 已提交
24
    version="1.0.1",
W
wuzewu 已提交
25
    type="CV/object_detection",
W
wuzewu 已提交
26
    summary="Baidu's YOLOv3 model for pedestrian detection, with backbone DarkNet53.",
W
wuzewu 已提交
27
    author="paddlepaddle",
W
wuzewu 已提交
28
    author_email="paddle-dev@baidu.com")
W
wuzewu 已提交
29 30
class YOLOv3DarkNet53Pedestrian(hub.Module):
    def _initialize(self):
W
wuzewu 已提交
31 32
        self.default_pretrained_model_path = os.path.join(self.directory, "yolov3_darknet53_pedestrian_model")
        self.label_names = load_label_info(os.path.join(self.directory, "label_file.txt"))
W
wuzewu 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        self._set_config()

    def _set_config(self):
        """
        predictor config setting.
        """
        cpu_config = AnalysisConfig(self.default_pretrained_model_path)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        cpu_config.switch_ir_optim(False)
        self.cpu_predictor = create_paddle_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = AnalysisConfig(self.default_pretrained_model_path)
            gpu_config.disable_glog_info()
            gpu_config.enable_use_gpu(memory_pool_init_size_mb=500, device_id=0)
            self.gpu_predictor = create_paddle_predictor(gpu_config)

57
    def context(self, trainable=True, pretrained=True, get_prediction=False):
W
wuzewu 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
        """
        Distill the Head Features, so as to perform transfer learning.

        Args:
            trainable (bool): whether to set parameters trainable.
            pretrained (bool): whether to load default pretrained model.
            get_prediction (bool): whether to get prediction.

        Returns:
             inputs(dict): the input variables.
             outputs(dict): the output variables.
             context_prog (Program): the program to execute transfer learning.
        """
71
        context_prog = fluid.Program()
W
wuzewu 已提交
72
        startup_program = fluid.Program()
73
        with fluid.program_guard(context_prog, startup_program):
W
wuzewu 已提交
74 75
            with fluid.unique_name.guard():
                # image
W
wuzewu 已提交
76
                image = fluid.layers.data(name='image', shape=[3, 608, 608], dtype='float32')
77 78 79 80 81
                # backbone
                backbone = DarkNet(norm_type='sync_bn', norm_decay=0., depth=53)
                # body_feats
                body_feats = backbone(image)
                # im_size
W
wuzewu 已提交
82
                im_size = fluid.layers.data(name='im_size', shape=[2], dtype='int32')
W
wuzewu 已提交
83
                # yolo_head
84
                yolo_head = YOLOv3Head(
W
wuzewu 已提交
85
                    anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
W
wuzewu 已提交
86 87
                    anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198],
                             [373, 326]],
W
wuzewu 已提交
88 89 90 91
                    norm_decay=0.,
                    num_classes=1,
                    ignore_thresh=0.7,
                    label_smooth=True,
92
                    nms=MultiClassNMS(
W
wuzewu 已提交
93 94 95 96 97 98
                        background_label=-1,
                        keep_top_k=100,
                        nms_threshold=0.45,
                        nms_top_k=1000,
                        normalized=False,
                        score_threshold=0.01))
99
                # head_features
W
wuzewu 已提交
100
                head_features, body_features = yolo_head._get_outputs(body_feats, is_train=trainable)
W
wuzewu 已提交
101 102 103

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
104 105 106 107 108
                exe.run(fluid.default_startup_program())

                # var_prefix
                var_prefix = '@HUB_{}@'.format(self.name)
                # name of inputs
W
wuzewu 已提交
109
                inputs = {'image': var_prefix + image.name, 'im_size': var_prefix + im_size.name}
110 111 112 113 114 115
                # name of outputs
                if get_prediction:
                    bbox_out = yolo_head.get_prediction(head_features, im_size)
                    outputs = {'bbox_out': [var_prefix + bbox_out.name]}
                else:
                    outputs = {
W
wuzewu 已提交
116 117
                        'head_features': [var_prefix + var.name for var in head_features],
                        'body_features': [var_prefix + var.name for var in body_features]
118 119 120 121 122
                    }
                # add_vars_prefix
                add_vars_prefix(context_prog, var_prefix)
                add_vars_prefix(fluid.default_startup_program(), var_prefix)
                # inputs
W
wuzewu 已提交
123
                inputs = {key: context_prog.global_block().vars[value] for key, value in inputs.items()}
124 125
                # outputs
                outputs = {
W
wuzewu 已提交
126
                    key: [context_prog.global_block().vars[varname] for varname in value]
127 128 129 130 131 132
                    for key, value in outputs.items()
                }
                # trainable
                for param in context_prog.global_block().iter_parameters():
                    param.trainable = trainable
                # pretrained
W
wuzewu 已提交
133 134 135
                if pretrained:

                    def _if_exist(var):
W
wuzewu 已提交
136
                        return os.path.exists(os.path.join(self.default_pretrained_model_path, var.name))
W
wuzewu 已提交
137

W
wuzewu 已提交
138
                    fluid.io.load_vars(exe, self.default_pretrained_model_path, predicate=_if_exist)
W
wuzewu 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
                else:
                    exe.run(startup_program)

                return inputs, outputs, context_prog

    def object_detection(self,
                         paths=None,
                         images=None,
                         batch_size=1,
                         use_gpu=False,
                         output_dir='yolov3_pedestrian_detect_output',
                         score_thresh=0.2,
                         visualization=True):
        """API of Object Detection.

        Args:
            paths (list[str]): The paths of images.
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]
            batch_size (int): batch size.
            use_gpu (bool): Whether to use gpu.
            output_dir (str): The path to store output images.
            visualization (bool): Whether to save image or not.
            score_thresh (float): threshold for object detecion.

        Returns:
            res (list[dict]): The result of pedestrian detecion. keys include 'data', 'save_path', the corresponding value is:
                data (dict): the result of object detection, keys include 'left', 'top', 'right', 'bottom', 'label', 'confidence', the corresponding value is:
                    left (float): The X coordinate of the upper left corner of the bounding box;
                    top (float): The Y coordinate of the upper left corner of the bounding box;
                    right (float): The X coordinate of the lower right corner of the bounding box;
                    bottom (float): The Y coordinate of the lower right corner of the bounding box;
                    label (str): The label of detection result;
                    confidence (float): The confidence of detection result.
                save_path (str, optional): The path to save output images.
        """
W
wuzewu 已提交
174 175 176 177 178 179
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
            except:
                raise RuntimeError(
180
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
W
wuzewu 已提交
181 182
                )

W
wuzewu 已提交
183
        paths = paths if paths else list()
184
        data_reader = partial(reader, paths, images)
W
wuzewu 已提交
185 186 187 188 189 190 191
        batch_reader = fluid.io.batch(data_reader, batch_size=batch_size)
        res = []
        for iter_id, feed_data in enumerate(batch_reader()):
            feed_data = np.array(feed_data)
            image_tensor = PaddleTensor(np.array(list(feed_data[:, 0])))
            im_size_tensor = PaddleTensor(np.array(list(feed_data[:, 1])))
            if use_gpu:
W
wuzewu 已提交
192
                data_out = self.gpu_predictor.run([image_tensor, im_size_tensor])
W
wuzewu 已提交
193
            else:
W
wuzewu 已提交
194
                data_out = self.cpu_predictor.run([image_tensor, im_size_tensor])
W
wuzewu 已提交
195

196
            output = postprocess(
W
wuzewu 已提交
197 198 199 200 201 202 203 204 205 206 207
                paths=paths,
                images=images,
                data_out=data_out,
                score_thresh=score_thresh,
                label_names=self.label_names,
                output_dir=output_dir,
                handle_id=iter_id * batch_size,
                visualization=visualization)
            res.extend(output)
        return res

W
wuzewu 已提交
208
    def save_inference_model(self, dirname, model_filename=None, params_filename=None, combined=True):
W
wuzewu 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        if combined:
            model_filename = "__model__" if not model_filename else model_filename
            params_filename = "__params__" if not params_filename else params_filename
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        program, feeded_var_names, target_vars = fluid.io.load_inference_model(
            dirname=self.default_pretrained_model_path, executor=exe)

        fluid.io.save_inference_model(
            dirname=dirname,
            main_program=program,
            executor=exe,
            feeded_var_names=feeded_var_names,
            target_vars=target_vars,
            model_filename=model_filename,
            params_filename=params_filename)

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
W
wuzewu 已提交
233
        results = self.object_detection(images=images_decode, **kwargs)
W
wuzewu 已提交
234 235 236 237 238 239 240 241 242 243 244 245
        return results

    @runnable
    def run_cmd(self, argvs):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)
W
wuzewu 已提交
246
        self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
W
wuzewu 已提交
247
        self.arg_config_group = self.parser.add_argument_group(
W
wuzewu 已提交
248
            title="Config options", description="Run configuration for controlling module behavior, not required.")
W
wuzewu 已提交
249 250 251
        self.add_module_config_arg()
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
W
wuzewu 已提交
252
        results = self.object_detection(
W
wuzewu 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265
            paths=[args.input_path],
            batch_size=args.batch_size,
            use_gpu=args.use_gpu,
            output_dir=args.output_dir,
            visualization=args.visualization,
            score_thresh=args.score_thresh)
        return results

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument(
W
wuzewu 已提交
266
            '--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not")
W
wuzewu 已提交
267 268 269 270 271 272
        self.arg_config_group.add_argument(
            '--output_dir',
            type=str,
            default='yolov3_pedestrian_detect_output',
            help="The directory to save output images.")
        self.arg_config_group.add_argument(
W
wuzewu 已提交
273
            '--visualization', type=ast.literal_eval, default=False, help="whether to save output as images.")
W
wuzewu 已提交
274 275 276 277 278

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
W
wuzewu 已提交
279 280
        self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")
        self.arg_input_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
W
wuzewu 已提交
281
        self.arg_input_group.add_argument(
W
wuzewu 已提交
282
            '--score_thresh', type=ast.literal_eval, default=0.2, help="threshold for object detecion.")