processor.py 13.3 KB
Newer Older
H
haoyuying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
import math

import cv2
import numpy as np
from scipy.ndimage.filters import gaussian_filter


class PadDownRight:
    """
    Get padding images.

    Args:
        stride(int): Stride for calculate pad value for edges.
        padValue(int): Initialization for new area.
    """
W
wuzewu 已提交
16

H
haoyuying 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def __init__(self, stride: int = 8, padValue: int = 128):
        self.stride = stride
        self.padValue = padValue

    def __call__(self, img: np.ndarray):
        h, w = img.shape[0:2]
        pad = 4 * [0]
        pad[2] = 0 if (h % self.stride == 0) else self.stride - (h % self.stride)  # down
        pad[3] = 0 if (w % self.stride == 0) else self.stride - (w % self.stride)  # right

        img_padded = img
        pad_up = np.tile(img_padded[0:1, :, :] * 0 + self.padValue, (pad[0], 1, 1))
        img_padded = np.concatenate((pad_up, img_padded), axis=0)
        pad_left = np.tile(img_padded[:, 0:1, :] * 0 + self.padValue, (1, pad[1], 1))
        img_padded = np.concatenate((pad_left, img_padded), axis=1)
        pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + self.padValue, (pad[2], 1, 1))
        img_padded = np.concatenate((img_padded, pad_down), axis=0)
        pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + self.padValue, (1, pad[3], 1))
        img_padded = np.concatenate((img_padded, pad_right), axis=1)

        return img_padded, pad


class RemovePadding:
    """
    Remove the padding values.

    Args:
        stride(int): Scales for resizing the images.

    """
W
wuzewu 已提交
48

H
haoyuying 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    def __init__(self, stride: int = 8):
        self.stride = stride

    def __call__(self, data: np.ndarray, imageToTest_padded: np.ndarray, oriImg: np.ndarray, pad: list) -> np.ndarray:
        heatmap = np.transpose(np.squeeze(data), (1, 2, 0))
        heatmap = cv2.resize(heatmap, (0, 0), fx=self.stride, fy=self.stride, interpolation=cv2.INTER_CUBIC)
        heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
        heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)

        return heatmap


class GetPeak:
    """
    Get peak values and coordinate from input.

    Args:
        thresh(float): Threshold value for selecting peak value, default is 0.1.
    """
W
wuzewu 已提交
68

H
haoyuying 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    def __init__(self, thresh=0.1):
        self.thresh = thresh

    def __call__(self, heatmap: np.ndarray):
        all_peaks = []
        peak_counter = 0
        for part in range(18):
            map_ori = heatmap[:, :, part]
            one_heatmap = gaussian_filter(map_ori, sigma=3)

            map_left = np.zeros(one_heatmap.shape)
            map_left[1:, :] = one_heatmap[:-1, :]
            map_right = np.zeros(one_heatmap.shape)
            map_right[:-1, :] = one_heatmap[1:, :]
            map_up = np.zeros(one_heatmap.shape)
            map_up[:, 1:] = one_heatmap[:, :-1]
            map_down = np.zeros(one_heatmap.shape)
            map_down[:, :-1] = one_heatmap[:, 1:]

            peaks_binary = np.logical_and.reduce(
                (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down,
                 one_heatmap > self.thresh))
            peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]))  # note reverse
            peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks]
            peak_id = range(peak_counter, peak_counter + len(peaks))
            peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i], ) for i in range(len(peak_id))]

            all_peaks.append(peaks_with_score_and_id)
            peak_counter += len(peaks)

        return all_peaks


class Connection:
    """
    Get connection for selected estimation points.

    Args:
        mapIdx(list): Part Affinity Fields map index, default is None.
        limbSeq(list): Peak candidate map index, default is None.

    """
W
wuzewu 已提交
111

H
haoyuying 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    def __init__(self, mapIdx: list = None, limbSeq: list = None):
        if mapIdx and limbSeq:
            self.mapIdx = mapIdx
            self.limbSeq = limbSeq
        else:
            self.mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
                           [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
                           [55, 56], [37, 38], [45, 46]]

            self.limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
                            [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
                            [1, 16], [16, 18], [3, 17], [6, 18]]
        self.caculate_vector = CalculateVector()

    def __call__(self, all_peaks: list, paf_avg: np.ndarray, orgimg: np.ndarray):
        connection_all = []
        special_k = []
        for k in range(len(self.mapIdx)):
            score_mid = paf_avg[:, :, [x - 19 for x in self.mapIdx[k]]]
            candA = all_peaks[self.limbSeq[k][0] - 1]
            candB = all_peaks[self.limbSeq[k][1] - 1]
            nA = len(candA)
            nB = len(candB)
            if nA != 0 and nB != 0:
                connection_candidate = self.caculate_vector(candA, candB, nA, nB, score_mid, orgimg)
                connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
                connection = np.zeros((0, 5))
                for c in range(len(connection_candidate)):
                    i, j, s = connection_candidate[c][0:3]
                    if i not in connection[:, 3] and j not in connection[:, 4]:
                        connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
                        if len(connection) >= min(nA, nB):
                            break

                connection_all.append(connection)
            else:
                special_k.append(k)
                connection_all.append([])

        return connection_all, special_k


class CalculateVector:
    """
    Vector decomposition and normalization, refer Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
    for more details.

    Args:
        thresh(float): Threshold value for selecting candidate vector, default is 0.05.
    """
W
wuzewu 已提交
162

H
haoyuying 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    def __init__(self, thresh: float = 0.05):
        self.thresh = thresh

    def __call__(self, candA: list, candB: list, nA: int, nB: int, score_mid: np.ndarray, oriImg: np.ndarray):
        connection_candidate = []
        for i in range(nA):
            for j in range(nB):
                vec = np.subtract(candB[j][:2], candA[i][:2])
                norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) + 1e-5
                vec = np.divide(vec, norm)

                startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=10), \
                                    np.linspace(candA[i][1], candB[j][1], num=10)))

                vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
                                  for I in range(len(startend))])
                vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
                                  for I in range(len(startend))])

                score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
                score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(0.5 * oriImg.shape[0] / norm - 1, 0)
                criterion1 = len(np.nonzero(score_midpts > self.thresh)[0]) > 0.8 * len(score_midpts)
                criterion2 = score_with_dist_prior > 0
                if criterion1 and criterion2:
                    connection_candidate.append(
                        [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
        return connection_candidate


class DrawPose:
    """
    Draw Pose estimation results on canvas.

    Args:
        stickwidth(int): Angle value to draw approximate ellipse curve, default is 4.

    """
W
wuzewu 已提交
200

H
haoyuying 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    def __init__(self, stickwidth: int = 4):
        self.stickwidth = stickwidth

        self.limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], [10, 11], [2, 12], [12, 13],
                        [13, 14], [2, 1], [1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18]]

        self.colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0],
                       [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
                       [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255],
                       [255, 0, 170], [255, 0, 85]]

    def __call__(self, canvas: np.ndarray, candidate: np.ndarray, subset: np.ndarray):
        for i in range(18):
            for n in range(len(subset)):
                index = int(subset[n][i])
                if index == -1:
                    continue
                x, y = candidate[index][0:2]
                cv2.circle(canvas, (int(x), int(y)), 4, self.colors[i], thickness=-1)
        for i in range(17):
            for n in range(len(subset)):
                index = subset[n][np.array(self.limbSeq[i]) - 1]
                if -1 in index:
                    continue
                cur_canvas = canvas.copy()
                Y = candidate[index.astype(int), 0]
                X = candidate[index.astype(int), 1]
                mX = np.mean(X)
                mY = np.mean(Y)
                length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
                angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
H
haoyuying 已提交
232 233
                polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), self.stickwidth), \
                                           int(angle), 0, 360, 1)
H
haoyuying 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
                cv2.fillConvexPoly(cur_canvas, polygon, self.colors[i])
                canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
        return canvas


class Candidate:
    """
    Select candidate for body pose estimation.

    Args:
        mapIdx(list): Part Affinity Fields map index, default is None.
        limbSeq(list): Peak candidate map index, default is None.
    """
W
wuzewu 已提交
247

H
haoyuying 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    def __init__(self, mapIdx: list = None, limbSeq: list = None):
        if mapIdx and limbSeq:
            self.mapIdx = mapIdx
            self.limbSeq = limbSeq
        else:
            self.mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
                           [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
                           [55, 56], [37, 38], [45, 46]]
            self.limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
                            [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
                            [1, 16], [16, 18], [3, 17], [6, 18]]

    def __call__(self, all_peaks: list, connection_all: list, special_k: list):
        subset = -1 * np.ones((0, 20))
        candidate = np.array([item for sublist in all_peaks for item in sublist])
        for k in range(len(self.mapIdx)):
            if k not in special_k:
                partAs = connection_all[k][:, 0]
                partBs = connection_all[k][:, 1]
                indexA, indexB = np.array(self.limbSeq[k]) - 1

                for i in range(len(connection_all[k])):  # = 1:size(temp,1)
                    found = 0
                    subset_idx = [-1, -1]
                    for j in range(len(subset)):  # 1:size(subset,1):
                        if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
                            subset_idx[found] = j
                            found += 1

                    if found == 1:
                        j = subset_idx[0]
                        if subset[j][indexB] != partBs[i]:
                            subset[j][indexB] = partBs[i]
                            subset[j][-1] += 1
                            subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
                    elif found == 2:  # if found 2 and disjoint, merge them
                        j1, j2 = subset_idx
                        membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
                        if len(np.nonzero(membership == 2)[0]) == 0:  # merge
                            subset[j1][:-2] += (subset[j2][:-2] + 1)
                            subset[j1][-2:] += subset[j2][-2:]
                            subset[j1][-2] += connection_all[k][i][2]
                            subset = np.delete(subset, j2, 0)
                        else:  # as like found == 1
                            subset[j1][indexB] = partBs[i]
                            subset[j1][-1] += 1
                            subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]

                    # if find no partA in the subset, create a new subset
                    elif not found and k < 17:
                        row = -1 * np.ones(20)
                        row[indexA] = partAs[i]
                        row[indexB] = partBs[i]
                        row[-1] = 2
                        row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
                        subset = np.vstack([subset, row])
        # delete some rows of subset which has few parts occur
        deleteIdx = []
        for i in range(len(subset)):
            if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
                deleteIdx.append(i)
        subset = np.delete(subset, deleteIdx, axis=0)

        return candidate, subset