module.py 10.3 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# coding=utf-8
from __future__ import absolute_import
from __future__ import division

import ast
import argparse
import os

import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving

from pyramidbox_lite_mobile_mask.data_feed import reader
from pyramidbox_lite_mobile_mask.processor import postprocess, base64_to_cv2


@moduleinfo(
    name="pyramidbox_lite_mobile_mask",
    type="CV/face_detection",
    author="baidu-vis",
    author_email="",
    summary=
    "Pyramidbox-Lite-Mobile-Mask is a high-performance face detection model used to detect whether people wear masks.",
    version="1.3.0")
class PyramidBoxLiteMobileMask(hub.Module):
    def _initialize(self, face_detector_module=None):
        """
        Args:
            face_detector_module (class): module to detect face.
        """
W
wuzewu 已提交
33
        self.default_pretrained_model_path = os.path.join(self.directory, "pyramidbox_lite_mobile_mask_model")
W
wuzewu 已提交
34 35 36 37 38
        if face_detector_module is None:
            self.face_detector = hub.Module(name='pyramidbox_lite_mobile')
        else:
            self.face_detector = face_detector_module
        self._set_config()
W
wuzewu 已提交
39
        self.processor = self
W
wuzewu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

    def _set_config(self):
        """
        predictor config setting
        """
        cpu_config = AnalysisConfig(self.default_pretrained_model_path)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        self.cpu_predictor = create_paddle_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = AnalysisConfig(self.default_pretrained_model_path)
            gpu_config.disable_glog_info()
W
wuzewu 已提交
59
            gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
W
wuzewu 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            self.gpu_predictor = create_paddle_predictor(gpu_config)

    def set_face_detector_module(self, face_detector_module):
        """
        Set face detector.
        Args:
            face_detector_module (class): module to detect face.
        """
        self.face_detector = face_detector_module

    def get_face_detector_module(self):
        return self.face_detector

    def face_detection(self,
                       images=None,
                       paths=None,
                       data=None,
                       batch_size=1,
                       use_gpu=False,
                       visualization=False,
                       output_dir='detection_result',
                       use_multi_scale=False,
                       shrink=0.5,
                       confs_threshold=0.6):
        """
        API for face detection.

        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C], color space must be BGR.
            paths (list[str]): The paths of images.
            batch_size (int): batch size of image tensor to be fed into the later classification network.
            use_gpu (bool): Whether to use gpu.
            visualization (bool): Whether to save image or not.
            output_dir (str): The path to store output images.
            use_multi_scale (bool): whether to enable multi-scale face detection. Enabling multi-scale face detection
                can increase the accuracy to detect faces, however,
                it reduce the prediction speed for the increase model calculation.
            shrink (float): parameter to control the resize scale in preprocess.
            confs_threshold (float): confidence threshold.

        Returns:
            res (list[dict]): The result of face detection and save path of images.
        """
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
            except:
                raise RuntimeError(
109
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
W
wuzewu 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                )

        # compatibility with older versions
        if data:
            if 'image' in data:
                if paths is None:
                    paths = list()
                paths += data['image']
            elif 'data' in data:
                if images is None:
                    images = list()
                images += data['data']

        # get all data
        all_element = list()
W
wuzewu 已提交
125
        for yield_data in reader(self.face_detector, shrink, confs_threshold, images, paths, use_gpu, use_multi_scale):
W
wuzewu 已提交
126 127 128 129 130
            all_element.append(yield_data)

        image_list = list()
        element_image_num = list()
        for i in range(len(all_element)):
W
wuzewu 已提交
131
            element_image = [handled['image'] for handled in all_element[i]['preprocessed']]
W
wuzewu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
            element_image_num.append(len(element_image))
            image_list.extend(element_image)

        total_num = len(image_list)
        loop_num = int(np.ceil(total_num / batch_size))

        predict_out = np.zeros((1, 2))
        for iter_id in range(loop_num):
            batch_data = list()
            handle_id = iter_id * batch_size
            for element_id in range(batch_size):
                try:
                    batch_data.append(image_list[handle_id + element_id])
                except:
                    pass

            image_arr = np.squeeze(np.array(batch_data), axis=1)
            image_tensor = PaddleTensor(image_arr.copy())
W
wuzewu 已提交
150
            data_out = self.gpu_predictor.run([image_tensor]) if use_gpu else self.cpu_predictor.run([image_tensor])
W
wuzewu 已提交
151 152 153 154 155 156 157 158 159
            # len(data_out) == 1
            # data_out[0].as_ndarray().shape == (-1, 2)
            data_out = data_out[0].as_ndarray()
            predict_out = np.concatenate((predict_out, data_out))

        predict_out = predict_out[1:]
        # postprocess one by one
        res = list()
        for i in range(len(all_element)):
W
wuzewu 已提交
160
            detect_faces_list = [handled['face'] for handled in all_element[i]['preprocessed']]
W
wuzewu 已提交
161 162 163 164 165 166 167 168 169 170 171 172
            interval_left = sum(element_image_num[0:i])
            interval_right = interval_left + element_image_num[i]
            out = postprocess(
                confidence_out=predict_out[interval_left:interval_right],
                org_im=all_element[i]['org_im'],
                org_im_path=all_element[i]['org_im_path'],
                detected_faces=detect_faces_list,
                output_dir=output_dir,
                visualization=visualization)
            res.append(out)
        return res

W
wuzewu 已提交
173
    def save_inference_model(self, dirname, model_filename=None, params_filename=None, combined=True):
W
wuzewu 已提交
174 175
        classifier_dir = os.path.join(dirname, 'mask_detector')
        detector_dir = os.path.join(dirname, 'pyramidbox_lite')
W
wuzewu 已提交
176 177
        self._save_classifier_model(classifier_dir, model_filename, params_filename, combined)
        self._save_detector_model(detector_dir, model_filename, params_filename, combined)
W
wuzewu 已提交
178

W
wuzewu 已提交
179 180
    def _save_detector_model(self, dirname, model_filename=None, params_filename=None, combined=True):
        self.face_detector.save_inference_model(dirname, model_filename, params_filename, combined)
W
wuzewu 已提交
181

W
wuzewu 已提交
182
    def _save_classifier_model(self, dirname, model_filename=None, params_filename=None, combined=True):
W
wuzewu 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        if combined:
            model_filename = "__model__" if not model_filename else model_filename
            params_filename = "__params__" if not params_filename else params_filename
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        program, feeded_var_names, target_vars = fluid.io.load_inference_model(
            dirname=self.default_pretrained_model_path, executor=exe)

        fluid.io.save_inference_model(
            dirname=dirname,
            main_program=program,
            executor=exe,
            feeded_var_names=feeded_var_names,
            target_vars=target_vars,
            model_filename=model_filename,
            params_filename=params_filename)

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.face_detection(images_decode, **kwargs)
        return results

    @runnable
    def run_cmd(self, argvs):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)
W
wuzewu 已提交
220
        self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
W
wuzewu 已提交
221
        self.arg_config_group = self.parser.add_argument_group(
W
wuzewu 已提交
222
            title="Config options", description="Run configuration for controlling module behavior, not required.")
W
wuzewu 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        self.add_module_config_arg()
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
        results = self.face_detection(
            paths=[args.input_path],
            use_gpu=args.use_gpu,
            output_dir=args.output_dir,
            visualization=args.visualization,
            shrink=args.shrink,
            confs_threshold=args.confs_threshold)
        return results

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument(
W
wuzewu 已提交
240
            '--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not")
W
wuzewu 已提交
241
        self.arg_config_group.add_argument(
W
wuzewu 已提交
242
            '--output_dir', type=str, default='detection_result', help="The directory to save output images.")
W
wuzewu 已提交
243
        self.arg_config_group.add_argument(
W
wuzewu 已提交
244
            '--visualization', type=ast.literal_eval, default=False, help="whether to save output as images.")
W
wuzewu 已提交
245 246 247 248 249

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
W
wuzewu 已提交
250
        self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")
W
wuzewu 已提交
251 252 253 254
        self.arg_input_group.add_argument(
            '--shrink',
            type=ast.literal_eval,
            default=0.5,
W
wuzewu 已提交
255
            help="resize the image to `shrink * original_shape` before feeding into network.")
W
wuzewu 已提交
256
        self.arg_input_group.add_argument(
W
wuzewu 已提交
257
            '--confs_threshold', type=ast.literal_eval, default=0.6, help="confidence threshold.")