module.py 7.0 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# coding=utf-8
from __future__ import absolute_import
from __future__ import division

import ast
import argparse
import os

import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving

from pyramidbox_face_detection.data_feed import reader
from pyramidbox_face_detection.processor import postprocess, base64_to_cv2


@moduleinfo(
    name="pyramidbox_face_detection",
    type="CV/face_detection",
    author="baidu-vis",
    author_email="",
    summary="Baidu's PyramidBox model for face detection.",
    version="1.1.0")
class PyramidBoxFaceDetection(hub.Module):
    def _initialize(self):
W
wuzewu 已提交
28
        self.default_pretrained_model_path = os.path.join(self.directory, "pyramidbox_face_detection_widerface")
W
wuzewu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        self._set_config()

    def _set_config(self):
        """
        predictor config setting
        """
        cpu_config = AnalysisConfig(self.default_pretrained_model_path)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        self.cpu_predictor = create_paddle_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = AnalysisConfig(self.default_pretrained_model_path)
            gpu_config.disable_glog_info()
W
wuzewu 已提交
49
            gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
W
wuzewu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            self.gpu_predictor = create_paddle_predictor(gpu_config)

    def face_detection(self,
                       images=None,
                       paths=None,
                       data=None,
                       use_gpu=False,
                       output_dir='detection_result',
                       visualization=False,
                       score_thresh=0.15):
        """
        API for face detection.

        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]
            paths (list[str]): The paths of images.
            use_gpu (bool): Whether to use gpu.
            output_dir (str): The path to store output images.
            visualization (bool): Whether to save image or not.
            score_thresh (float): score threshold to limit the detection result.

        Returns:
            res (list[dict]): The result of face detection, keys are 'data' and 'path', the correspoding values are:
            data (list[dict]): 5 keys, where
                'left', 'top', 'right', 'bottom' are the coordinate of detection bounding box,
                'confidence' is the confidence this bbox.
            path (str): The path of original image.
        """
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
            except:
                raise RuntimeError(
84
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
W
wuzewu 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
                )

        # compatibility with older versions
        if data:
            if 'image' in data:
                if paths is None:
                    paths = list()
                paths += data['image']

        res = list()
        # process one by one
        for element in reader(images, paths):
            image = np.expand_dims(element['image'], axis=0).astype('float32')
            image_tensor = PaddleTensor(image.copy())
W
wuzewu 已提交
99
            data_out = self.gpu_predictor.run([image_tensor]) if use_gpu else self.cpu_predictor.run([image_tensor])
W
wuzewu 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
            # print(len(data_out))  # 1
            out = postprocess(
                data_out=data_out[0].as_ndarray(),
                org_im=element['org_im'],
                org_im_path=element['org_im_path'],
                org_im_width=element['org_im_width'],
                org_im_height=element['org_im_height'],
                output_dir=output_dir,
                visualization=visualization,
                score_thresh=score_thresh)
            res.append(out)
        return res

W
wuzewu 已提交
113
    def save_inference_model(self, dirname, model_filename=None, params_filename=None, combined=True):
W
wuzewu 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        if combined:
            model_filename = "__model__" if not model_filename else model_filename
            params_filename = "__params__" if not params_filename else params_filename
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        program, feeded_var_names, target_vars = fluid.io.load_inference_model(
            dirname=self.default_pretrained_model_path, executor=exe)

        fluid.io.save_inference_model(
            dirname=dirname,
            main_program=program,
            executor=exe,
            feeded_var_names=feeded_var_names,
            target_vars=target_vars,
            model_filename=model_filename,
            params_filename=params_filename)

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.face_detection(images_decode, **kwargs)
        return results

    @runnable
    def run_cmd(self, argvs):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)
W
wuzewu 已提交
151
        self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
W
wuzewu 已提交
152
        self.arg_config_group = self.parser.add_argument_group(
W
wuzewu 已提交
153
            title="Config options", description="Run configuration for controlling module behavior, not required.")
W
wuzewu 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        self.add_module_config_arg()
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
        results = self.face_detection(
            paths=[args.input_path],
            use_gpu=args.use_gpu,
            output_dir=args.output_dir,
            visualization=args.visualization,
            score_thresh=args.score_thresh)
        return results

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument(
W
wuzewu 已提交
170
            '--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not")
W
wuzewu 已提交
171
        self.arg_config_group.add_argument(
W
wuzewu 已提交
172
            '--output_dir', type=str, default='detection_result', help="The directory to save output images.")
W
wuzewu 已提交
173
        self.arg_config_group.add_argument(
W
wuzewu 已提交
174
            '--visualization', type=ast.literal_eval, default=False, help="whether to save output as images.")
W
wuzewu 已提交
175 176 177 178 179

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
W
wuzewu 已提交
180
        self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")
W
wuzewu 已提交
181
        self.arg_input_group.add_argument(
W
wuzewu 已提交
182
            '--score_thresh', type=ast.literal_eval, default=0.15, help="score threshold of face detection.")