module.py 8.5 KB
Newer Older
H
haoyuying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule


class ConvBNLayer(nn.Layer):
    """Basic conv bn layer."""
W
wuzewu 已提交
30

H
haoyuying 已提交
31
    def __init__(
W
wuzewu 已提交
32 33 34 35 36 37 38 39 40
            self,
            num_channels: int,
            num_filters: int,
            filter_size: int,
            stride: int = 1,
            groups: int = 1,
            is_vd_mode: bool = False,
            act: str = None,
            name: str = None,
H
haoyuying 已提交
41 42 43 44 45
    ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
W
wuzewu 已提交
46 47 48 49 50 51 52 53 54
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
H
haoyuying 已提交
55 56 57 58
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
W
wuzewu 已提交
59 60 61 62 63 64 65
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
H
haoyuying 已提交
66 67 68 69 70 71 72 73 74 75 76

    def forward(self, inputs: paddle.Tensor):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(nn.Layer):
    """Bottleneck Block for ResNet50_vd."""
W
wuzewu 已提交
77

H
haoyuying 已提交
78 79 80 81 82 83 84 85 86
    def __init__(self,
                 num_channels: int,
                 num_filters: int,
                 stride: int,
                 shortcut: bool = True,
                 if_first: bool = False,
                 name: str = None):
        super(BottleneckBlock, self).__init__()

W
wuzewu 已提交
87 88 89 90 91 92 93 94 95 96 97
        self.conv0 = ConvBNLayer(
            num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c")
H
haoyuying 已提交
98 99

        if not shortcut:
W
wuzewu 已提交
100 101 102 103 104 105 106
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")
H
haoyuying 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

        self.shortcut = shortcut

    def forward(self, inputs: paddle.Tensor):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
        return y


class BasicBlock(nn.Layer):
    """Basic block for ResNet50_vd."""
W
wuzewu 已提交
125

H
haoyuying 已提交
126 127 128 129 130 131 132 133 134
    def __init__(self,
                 num_channels: int,
                 num_filters: int,
                 stride: int,
                 shortcut: bool = True,
                 if_first: bool = False,
                 name: str = None):
        super(BasicBlock, self).__init__()
        self.stride = stride
W
wuzewu 已提交
135 136 137 138 139 140 141 142 143
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters, num_filters=num_filters, filter_size=3, act=None, name=name + "_branch2b")
H
haoyuying 已提交
144 145

        if not shortcut:
W
wuzewu 已提交
146 147 148 149 150 151 152
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")
H
haoyuying 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

        self.shortcut = shortcut

    def forward(self, inputs: paddle.Tensor):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.elementwise_add(x=short, y=conv1, act='relu')
        return y


W
wuzewu 已提交
168 169 170 171 172 173 174 175 176
@moduleinfo(
    name="resnet50_vd_imagenet",
    type="CV/classification",
    author="paddlepaddle",
    author_email="",
    summary="resnet50_vd_imagenet is a classification model, "
    "this module is trained with Imagenet dataset.",
    version="1.1.0",
    meta=ImageClassifierModule)
H
haoyuying 已提交
177 178
class ResNet50_vd(nn.Layer):
    """ResNet50_vd model."""
W
wuzewu 已提交
179

H
haoyuying 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
        super(ResNet50_vd, self).__init__()

        self.layers = 50

        depth = [3, 4, 6, 3]
        num_channels = [64, 256, 512, 1024]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1")
        self.conv1_2 = ConvBNLayer(num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2")
        self.conv1_3 = ConvBNLayer(num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3")
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.block_list = []

        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                conv_name = "res" + str(block + 2) + chr(97 + i)
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
W
wuzewu 已提交
202 203 204 205 206 207 208
                    BottleneckBlock(
                        num_channels=num_channels[block] if i == 0 else num_filters[block] * 4,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        shortcut=shortcut,
                        if_first=block == i == 0,
                        name=conv_name))
H
haoyuying 已提交
209 210 211 212 213 214 215
                self.block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = AdaptiveAvgPool2d(1)
        self.pool2d_avg_channels = num_channels[-1] * 2
        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

W
wuzewu 已提交
216 217 218 219 220
        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))
H
haoyuying 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

        if load_checkpoint is not None:
            model_dict = paddle.load(load_checkpoint)[0]
            self.set_dict(model_dict)
            print("load custom checkpoint success")

        else:
            checkpoint = os.path.join(self.directory, 'resnet50_vd_imagenet.pdparams')
            if not os.path.exists(checkpoint):
                os.system(
                    'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnet50_vd_imagenet.pdparams -O '
                    + checkpoint)
            model_dict = paddle.load(checkpoint)[0]
            self.set_dict(model_dict)
            print("load pretrained checkpoint success")

    def forward(self, inputs: paddle.Tensor):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y