resnet_vd.py 6.7 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

W
wuzewu 已提交
25
__all__ = ["ResNet", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd", "ResNet200_vd"]
W
wuzewu 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class ResNet():
    def __init__(self, layers=50, is_3x3=False):
        self.params = train_parameters
        self.layers = layers
        self.is_3x3 = is_3x3

    def net(self, input, class_dim=1000):
        is_3x3 = self.is_3x3
        layers = self.layers
        supported_layers = [50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_filters = [64, 128, 256, 512]
        if is_3x3 == False:
W
wuzewu 已提交
63
            conv = self.conv_bn_layer(input=input, num_filters=64, filter_size=7, stride=2, act='relu')
W
wuzewu 已提交
64
        else:
W
wuzewu 已提交
65 66 67 68 69
            conv = self.conv_bn_layer(input=input, num_filters=32, filter_size=3, stride=2, act='relu', name='conv1_1')
            conv = self.conv_bn_layer(input=conv, num_filters=32, filter_size=3, stride=1, act='relu', name='conv1_2')
            conv = self.conv_bn_layer(input=conv, num_filters=64, filter_size=3, stride=1, act='relu', name='conv1_3')

        conv = fluid.layers.pool2d(input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
W
wuzewu 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

        for block in range(len(depth)):
            for i in range(depth[block]):
                if layers in [101, 152, 200] and block == 2:
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    if_first=block == 0,
                    name=conv_name)

W
wuzewu 已提交
87
        pool = fluid.layers.pool2d(input=conv, pool_size=7, pool_type='avg', global_pooling=True)
W
wuzewu 已提交
88 89 90 91 92
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)

        out = fluid.layers.fc(
            input=pool,
            size=class_dim,
W
wuzewu 已提交
93
            param_attr=fluid.param_attr.ParamAttr(initializer=fluid.initializer.Uniform(-stdv, stdv)))
W
wuzewu 已提交
94 95 96

        return out, pool

W
wuzewu 已提交
97
    def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None):
W
wuzewu 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

W
wuzewu 已提交
120 121
    def conv_bn_layer_new(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None):
        pool = fluid.layers.pool2d(input=input, pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg')
W
wuzewu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        conv = fluid.layers.conv2d(
            input=pool,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=1,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def shortcut(self, input, ch_out, stride, name, if_first=False):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            if if_first:
                return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
            else:
W
wuzewu 已提交
151
                return self.conv_bn_layer_new(input, ch_out, 1, stride, name=name)
W
wuzewu 已提交
152 153 154 155 156
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name, if_first):
        conv0 = self.conv_bn_layer(
W
wuzewu 已提交
157
            input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a")
W
wuzewu 已提交
158
        conv1 = self.conv_bn_layer(
W
wuzewu 已提交
159
            input=conv0, num_filters=num_filters, filter_size=3, stride=stride, act='relu', name=name + "_branch2b")
W
wuzewu 已提交
160
        conv2 = self.conv_bn_layer(
W
wuzewu 已提交
161 162 163
            input=conv1, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c")

        short = self.shortcut(input, num_filters * 4, stride, if_first=if_first, name=name + "_branch1")
W
wuzewu 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')


def ResNet50_vd():
    model = ResNet(layers=50, is_3x3=True)
    return model


def ResNet101_vd():
    model = ResNet(layers=101, is_3x3=True)
    return model


def ResNet152_vd():
    model = ResNet(layers=152, is_3x3=True)
    return model


def ResNet200_vd():
    model = ResNet(layers=200, is_3x3=True)
    return model