nonlocal_helper.py 7.6 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import paddle.fluid as fluid
from paddle.fluid import ParamAttr

nonlocal_params = {
    "use_zero_init_conv": False,
    "conv_init_std": 0.01,
    "no_bias": True,
    "use_maxpool": False,
    "use_softmax": True,
    "use_bn": False,
    "use_scale": True,  # vital for the model prformance!!!
    "use_affine": False,
    "bn_momentum": 0.9,
    "bn_epsilon": 1.0000001e-5,
    "bn_init_gamma": 0.9,
    "weight_decay_bn": 1.e-4,
}


W
wuzewu 已提交
25
def space_nonlocal(input, dim_in, dim_out, prefix, dim_inner, max_pool_stride=2):
W
wuzewu 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    cur = input
    theta = fluid.layers.conv2d(input = cur, num_filters = dim_inner, \
                                filter_size = [1, 1], stride = [1, 1], \
                                padding = [0, 0], \
                                param_attr=ParamAttr(name = prefix + '_theta' + "_w", \
                                    initializer = fluid.initializer.Normal(loc = 0.0,
                                    scale = nonlocal_params["conv_init_std"])), \
                                bias_attr = ParamAttr(name = prefix + '_theta' + "_b", \
                                    initializer = fluid.initializer.Constant(value = 0.)) \
                                        if not nonlocal_params["no_bias"] else False, \
                                name = prefix + '_theta')
    theta_shape = theta.shape
    theta_shape_op = fluid.layers.shape(theta)
    theta_shape_op.stop_gradient = True

    if nonlocal_params["use_maxpool"]:
        max_pool = fluid.layers.pool2d(input = cur, \
                                        pool_size = [max_pool_stride, max_pool_stride], \
                                        pool_type = 'max', \
                                        pool_stride = [max_pool_stride, max_pool_stride], \
                                        pool_padding = [0, 0], \
                                        name = prefix + '_pool')
    else:
        max_pool = cur

    phi = fluid.layers.conv2d(input = max_pool, num_filters = dim_inner, \
                             filter_size = [1, 1], stride = [1, 1], \
                             padding = [0, 0], \
                             param_attr = ParamAttr(name = prefix + '_phi' + "_w", \
                                 initializer = fluid.initializer.Normal(loc = 0.0,
                                 scale = nonlocal_params["conv_init_std"])), \
                             bias_attr = ParamAttr(name = prefix + '_phi' + "_b", \
                                 initializer = fluid.initializer.Constant(value = 0.)) \
                                      if (nonlocal_params["no_bias"] == 0) else False, \
                             name = prefix + '_phi')
    phi_shape = phi.shape

    g = fluid.layers.conv2d(input = max_pool, num_filters = dim_inner, \
                 filter_size = [1, 1], stride = [1, 1], \
                 padding = [0, 0], \
                 param_attr = ParamAttr(name = prefix + '_g' + "_w", \
                     initializer = fluid.initializer.Normal(loc = 0.0, scale = nonlocal_params["conv_init_std"])), \
                 bias_attr = ParamAttr(name = prefix + '_g' + "_b", \
                     initializer = fluid.initializer.Constant(value = 0.)) if (nonlocal_params["no_bias"] == 0) else False, \
                 name = prefix + '_g')
    g_shape = g.shape
    # we have to use explicit batch size (to support arbitrary spacetime size)
    # e.g. (8, 1024, 4, 14, 14) => (8, 1024, 784)
    theta = fluid.layers.reshape(theta, shape=(0, 0, -1))
    theta = fluid.layers.transpose(theta, [0, 2, 1])
    phi = fluid.layers.reshape(phi, [0, 0, -1])
    theta_phi = fluid.layers.matmul(theta, phi, name=prefix + '_affinity')
    g = fluid.layers.reshape(g, [0, 0, -1])

    if nonlocal_params["use_softmax"]:
        if nonlocal_params["use_scale"]:
            theta_phi_sc = fluid.layers.scale(theta_phi, scale=dim_inner**-.5)
        else:
            theta_phi_sc = theta_phi
W
wuzewu 已提交
85
        p = fluid.layers.softmax(theta_phi_sc, name=prefix + '_affinity' + '_prob')
W
wuzewu 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
    else:
        # not clear about what is doing in xlw's code
        p = None  # not implemented
        raise "Not implemented when not use softmax"

    # note g's axis[2] corresponds to p's axis[2]
    # e.g. g(8, 1024, 784_2) * p(8, 784_1, 784_2) => (8, 1024, 784_1)
    p = fluid.layers.transpose(p, [0, 2, 1])
    t = fluid.layers.matmul(g, p, name=prefix + '_y')

    # reshape back
    # e.g. (8, 1024, 784) => (8, 1024, 4, 14, 14)
    t_shape = t.shape
W
wuzewu 已提交
99
    t_re = fluid.layers.reshape(t, shape=list(theta_shape), actual_shape=theta_shape_op)
W
wuzewu 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    blob_out = t_re
    blob_out = fluid.layers.conv2d(input = blob_out, num_filters = dim_out, \
                                  filter_size = [1, 1], stride = [1, 1], padding = [0, 0], \
                                  param_attr = ParamAttr(name = prefix + '_out' + "_w", \
                                      initializer = fluid.initializer.Constant(value = 0.) \
                                        if nonlocal_params["use_zero_init_conv"] \
                                        else fluid.initializer.Normal(loc = 0.0,
                                            scale = nonlocal_params["conv_init_std"])), \
                                  bias_attr = ParamAttr(name = prefix + '_out' + "_b", \
                                          initializer = fluid.initializer.Constant(value = 0.)) \
                                           if (nonlocal_params["no_bias"] == 0) else False, \
                                  name = prefix + '_out')
    blob_out_shape = blob_out.shape

    if nonlocal_params["use_bn"]:
        bn_name = prefix + "_bn"
        blob_out = fluid.layers.batch_norm(blob_out, \
                      # is_test = test_mode, \
                      momentum = nonlocal_params["bn_momentum"], \
                      epsilon = nonlocal_params["bn_epsilon"], \
                      name = bn_name, \
                      param_attr = ParamAttr(name = bn_name + "_s", \
                      initializer = fluid.initializer.Constant(value = nonlocal_params["bn_init_gamma"]), \
                      regularizer = fluid.regularizer.L2Decay(nonlocal_params["weight_decay_bn"])), \
                      bias_attr = ParamAttr(name = bn_name + "_b", \
                      regularizer = fluid.regularizer.L2Decay(nonlocal_params["weight_decay_bn"])), \
                      moving_mean_name = bn_name + "_rm", \
                      moving_variance_name = bn_name + "_riv") # add bn

    if nonlocal_params["use_affine"]:
        affine_scale = fluid.layers.create_parameter(\
                       shape=[blob_out_shape[1]], dtype = blob_out.dtype, \
                       attr=ParamAttr(name=prefix + '_affine' + '_s'), \
                       default_initializer = fluid.initializer.Constant(value = 1.))
        affine_bias = fluid.layers.create_parameter(\
                      shape=[blob_out_shape[1]], dtype = blob_out.dtype, \
                      attr=ParamAttr(name=prefix + '_affine' + '_b'), \
                      default_initializer = fluid.initializer.Constant(value = 0.))
        blob_out = fluid.layers.affine_channel(blob_out, scale = affine_scale, \
                      bias = affine_bias, name = prefix + '_affine')   # add affine

    return blob_out


def add_space_nonlocal(input, dim_in, dim_out, prefix, dim_inner):
    '''
    add_space_nonlocal:
        Non-local Neural Networks: see https://arxiv.org/abs/1711.07971
    '''
    conv = space_nonlocal(input, dim_in, dim_out, prefix, dim_inner)
    output = fluid.layers.elementwise_add(input, conv, name=prefix + '_sum')
    return output