module.py 7.8 KB
Newer Older
H
haoyuying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import math

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule


class ConvBNLayer(nn.Layer):
    """Basic conv bn layer."""
W
wuzewu 已提交
31

H
haoyuying 已提交
32 33 34 35 36 37 38 39 40 41
    def __init__(self,
                 num_channels: int,
                 num_filters: int,
                 filter_size: int,
                 stride: int = 1,
                 groups: int = 1,
                 act: str = None,
                 name: str = None):
        super(ConvBNLayer, self).__init__()

W
wuzewu 已提交
42 43 44 45 46 47 48 49 50
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
H
haoyuying 已提交
51 52 53 54
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
W
wuzewu 已提交
55 56 57 58 59 60 61
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")
H
haoyuying 已提交
62 63 64 65 66 67 68 69 70

    def forward(self, inputs: paddle.Tensor):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(nn.Layer):
    """Bottleneck Block for ResNet152."""
W
wuzewu 已提交
71

H
haoyuying 已提交
72 73 74
    def __init__(self, num_channels: int, num_filters: int, stride: int, shortcut: bool = True, name: str = None):
        super(BottleneckBlock, self).__init__()

W
wuzewu 已提交
75 76 77 78 79 80 81 82 83 84 85
        self.conv0 = ConvBNLayer(
            num_channels=num_channels, num_filters=num_filters, filter_size=1, act="relu", name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_branch2b")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c")
H
haoyuying 已提交
86 87

        if not shortcut:
W
wuzewu 已提交
88 89 90 91 92 93
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")
H
haoyuying 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs: paddle.Tensor):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = paddle.elementwise_add(x=short, y=conv2, act="relu")
        return y


class BasicBlock(nn.Layer):
    """Basic block for ResNet152."""
W
wuzewu 已提交
115

H
haoyuying 已提交
116 117 118
    def __init__(self, num_channels: int, num_filters: int, stride: int, shortcut: bool = True, name: str = None):
        super(BasicBlock, self).__init__()
        self.stride = stride
W
wuzewu 已提交
119 120 121 122 123 124 125 126 127
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters, num_filters=num_filters, filter_size=3, act=None, name=name + "_branch2b")
H
haoyuying 已提交
128 129

        if not shortcut:
W
wuzewu 已提交
130 131 132 133 134 135
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")
H
haoyuying 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        self.shortcut = shortcut

    def forward(self, inputs: paddle.Tensor):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.elementwise_add(x=short, y=conv1, act="relu")
        return y


W
wuzewu 已提交
151 152 153 154 155 156 157 158 159
@moduleinfo(
    name="resnet152_imagenet",
    type="CV/classification",
    author="paddlepaddle",
    author_email="",
    summary="resnet152_imagenet is a classification model, "
    "this module is trained with Baidu open sourced dataset.",
    version="1.1.0",
    meta=ImageClassifierModule)
H
haoyuying 已提交
160 161
class ResNet152(nn.Layer):
    """ResNet152 model."""
W
wuzewu 已提交
162

H
haoyuying 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
        super(ResNet152, self).__init__()

        self.layers = 152
        depth = [3, 8, 36, 3]
        num_channels = [64, 256, 512, 1024]
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(num_channels=3, num_filters=64, filter_size=7, stride=2, act="relu", name="conv1")
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.block_list = []

        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                if block == 2:
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)

                bottleneck_block = self.add_sublayer(
                    conv_name,
W
wuzewu 已提交
189 190 191 192 193 194
                    BottleneckBlock(
                        num_channels=num_channels[block] if i == 0 else num_filters[block] * 4,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        shortcut=shortcut,
                        name=conv_name))
H
haoyuying 已提交
195 196 197 198 199 200 201 202 203
                self.block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = AdaptiveAvgPool2d(1)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

W
wuzewu 已提交
204 205 206 207 208
        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))
H
haoyuying 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

        if load_checkpoint is not None:
            model_dict = paddle.load(load_checkpoint)[0]
            self.set_dict(model_dict)
            print("load custom checkpoint success")

        else:
            checkpoint = os.path.join(self.directory, 'resnet152_imagenet.pdparams')
            if not os.path.exists(checkpoint):
                os.system(
                    'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnet152_imagenet.pdparams -O '
                    + checkpoint)
            model_dict = paddle.load(checkpoint)[0]
            self.set_dict(model_dict)
            print("load pretrained checkpoint success")

    def forward(self, inputs: paddle.Tensor):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y