mobilenet_v2.py 5.6 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr

__all__ = ['MobileNetV2']

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class MobileNetV2():
    def __init__(self):
        self.params = train_parameters

    def net(self, input, class_dim=1000, scale=1.0):

        bottleneck_params_list = [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 3, 2),
            (6, 64, 4, 2),
            (6, 96, 3, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ]

        #conv1
        input = self.conv_bn_layer(
W
wuzewu 已提交
42
            input, num_filters=int(32 * scale), filter_size=3, stride=2, padding=1, if_act=True, name='conv1_1')
W
wuzewu 已提交
43 44 45 46 47 48 49

        # bottleneck sequences
        i = 1
        in_c = int(32 * scale)
        for layer_setting in bottleneck_params_list:
            t, c, n, s = layer_setting
            i += 1
W
wuzewu 已提交
50
            input = self.invresi_blocks(input=input, in_c=in_c, t=t, c=int(c * scale), n=n, s=s, name='conv' + str(i))
W
wuzewu 已提交
51 52 53 54 55 56 57 58 59 60 61
            in_c = int(c * scale)
        #last_conv
        input = self.conv_bn_layer(
            input=input,
            num_filters=int(1280 * scale) if scale > 1.0 else 1280,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True,
            name='conv9')

W
wuzewu 已提交
62
        input = fluid.layers.pool2d(input=input, pool_size=7, pool_stride=1, pool_type='avg', global_pooling=True)
W
wuzewu 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

        output = fluid.layers.fc(
            input=input,
            size=class_dim,
            param_attr=ParamAttr(name='fc10_weights'),
            bias_attr=ParamAttr(name='fc10_offset'))
        return output, input

    def conv_bn_layer(self,
                      input,
                      filter_size,
                      num_filters,
                      stride,
                      padding,
                      channels=None,
                      num_groups=1,
                      if_act=True,
                      name=None,
                      use_cudnn=True):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)
        bn_name = name + '_bn'
        bn = fluid.layers.batch_norm(
            input=conv,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        if if_act:
            return fluid.layers.relu6(bn)
        else:
            return bn

    def shortcut(self, input, data_residual):
        return fluid.layers.elementwise_add(input, data_residual)

    def inverted_residual_unit(self,
                               input,
                               num_in_filter,
                               num_filters,
                               ifshortcut,
                               stride,
                               filter_size,
                               padding,
                               expansion_factor,
                               name=None):
        num_expfilter = int(round(num_in_filter * expansion_factor))

        channel_expand = self.conv_bn_layer(
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
            name=name + '_expand')

        bottleneck_conv = self.conv_bn_layer(
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            num_groups=num_expfilter,
            if_act=True,
            name=name + '_dwise',
            use_cudnn=False)

        linear_out = self.conv_bn_layer(
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=False,
            name=name + '_linear')
        if ifshortcut:
            out = self.shortcut(input=input, data_residual=linear_out)
            return out
        else:
            return linear_out

    def invresi_blocks(self, input, in_c, t, c, n, s, name=None):
        first_block = self.inverted_residual_unit(
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=3,
            padding=1,
            expansion_factor=t,
            name=name + '_1')

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
            last_residual_block = self.inverted_residual_unit(
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=3,
                padding=1,
                expansion_factor=t,
                name=name + '_' + str(i + 1))
        return last_residual_block