module.py 14.2 KB
Newer Older
H
haoyuying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
from paddlehub.module.module import moduleinfo
from paddlehub.module.cv_module import ImageClassifierModule


class ConvBNLayer(nn.Layer):
    """Basic conv bn layer."""
W
wuzewu 已提交
30

H
haoyuying 已提交
31 32 33 34 35 36 37 38 39 40 41
    def __init__(self,
                 num_channels: int,
                 num_filters: int,
                 filter_size: int,
                 stride: int = 1,
                 padding: int = 0,
                 groups: int = 1,
                 act: str = 'relu',
                 name: str = None):
        super(ConvBNLayer, self).__init__()

W
wuzewu 已提交
42 43 44 45 46 47 48 49 50
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
H
haoyuying 已提交
51
        bn_name = name + "_bn"
W
wuzewu 已提交
52 53 54 55 56 57 58
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
H
haoyuying 已提交
59 60 61 62 63 64 65 66 67

    def forward(self, inputs: paddle.Tensor):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class InceptionStem(nn.Layer):
    """InceptionV4 stem module."""
W
wuzewu 已提交
68

H
haoyuying 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    def __init__(self):
        super(InceptionStem, self).__init__()
        self._conv_1 = ConvBNLayer(3, 32, 3, stride=2, act="relu", name="conv1_3x3_s2")
        self._conv_2 = ConvBNLayer(32, 32, 3, act="relu", name="conv2_3x3_s1")
        self._conv_3 = ConvBNLayer(32, 64, 3, padding=1, act="relu", name="conv3_3x3_s1")
        self._pool = MaxPool2d(kernel_size=3, stride=2, padding=0)
        self._conv2 = ConvBNLayer(64, 96, 3, stride=2, act="relu", name="inception_stem1_3x3_s2")
        self._conv1_1 = ConvBNLayer(160, 64, 1, act="relu", name="inception_stem2_3x3_reduce")
        self._conv1_2 = ConvBNLayer(64, 96, 3, act="relu", name="inception_stem2_3x3")
        self._conv2_1 = ConvBNLayer(160, 64, 1, act="relu", name="inception_stem2_1x7_reduce")
        self._conv2_2 = ConvBNLayer(64, 64, (7, 1), padding=(3, 0), act="relu", name="inception_stem2_1x7")
        self._conv2_3 = ConvBNLayer(64, 64, (1, 7), padding=(0, 3), act="relu", name="inception_stem2_7x1")
        self._conv2_4 = ConvBNLayer(64, 96, 3, act="relu", name="inception_stem2_3x3_2")
        self._conv3 = ConvBNLayer(192, 192, 3, stride=2, act="relu", name="inception_stem3_3x3_s2")

    def forward(self, inputs: paddle.Tensor):
        conv = self._conv_1(inputs)
        conv = self._conv_2(conv)
        conv = self._conv_3(conv)

        pool1 = self._pool(conv)
        conv2 = self._conv2(conv)
        concat = paddle.concat([pool1, conv2], axis=1)

        conv1 = self._conv1_1(concat)
        conv1 = self._conv1_2(conv1)

        conv2 = self._conv2_1(concat)
        conv2 = self._conv2_2(conv2)
        conv2 = self._conv2_3(conv2)
        conv2 = self._conv2_4(conv2)

        concat = paddle.concat([conv1, conv2], axis=1)

        conv1 = self._conv3(concat)
        pool1 = self._pool(concat)

        concat = paddle.concat([conv1, pool1], axis=1)
        return concat


class InceptionA(nn.Layer):
    """InceptionA module for InceptionV4."""
W
wuzewu 已提交
112

H
haoyuying 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    def __init__(self, name: str):
        super(InceptionA, self).__init__()
        self._pool = AvgPool2d(kernel_size=3, stride=1, padding=1)
        self._conv1 = ConvBNLayer(384, 96, 1, act="relu", name="inception_a" + name + "_1x1")
        self._conv2 = ConvBNLayer(384, 96, 1, act="relu", name="inception_a" + name + "_1x1_2")
        self._conv3_1 = ConvBNLayer(384, 64, 1, act="relu", name="inception_a" + name + "_3x3_reduce")
        self._conv3_2 = ConvBNLayer(64, 96, 3, padding=1, act="relu", name="inception_a" + name + "_3x3")
        self._conv4_1 = ConvBNLayer(384, 64, 1, act="relu", name="inception_a" + name + "_3x3_2_reduce")
        self._conv4_2 = ConvBNLayer(64, 96, 3, padding=1, act="relu", name="inception_a" + name + "_3x3_2")
        self._conv4_3 = ConvBNLayer(96, 96, 3, padding=1, act="relu", name="inception_a" + name + "_3x3_3")

    def forward(self, inputs: paddle.Tensor):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)

        conv2 = self._conv2(inputs)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)

        conv4 = self._conv4_1(inputs)
        conv4 = self._conv4_2(conv4)
        conv4 = self._conv4_3(conv4)

        concat = paddle.concat([conv1, conv2, conv3, conv4], axis=1)
        return concat


class ReductionA(nn.Layer):
    """ReductionA module for InceptionV4."""
W
wuzewu 已提交
143

H
haoyuying 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    def __init__(self):
        super(ReductionA, self).__init__()
        self._pool = MaxPool2d(kernel_size=3, stride=2, padding=0)
        self._conv2 = ConvBNLayer(384, 384, 3, stride=2, act="relu", name="reduction_a_3x3")
        self._conv3_1 = ConvBNLayer(384, 192, 1, act="relu", name="reduction_a_3x3_2_reduce")
        self._conv3_2 = ConvBNLayer(192, 224, 3, padding=1, act="relu", name="reduction_a_3x3_2")
        self._conv3_3 = ConvBNLayer(224, 256, 3, stride=2, act="relu", name="reduction_a_3x3_3")

    def forward(self, inputs: paddle.Tensor):
        pool1 = self._pool(inputs)
        conv2 = self._conv2(inputs)
        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
        concat = paddle.concat([pool1, conv2, conv3], axis=1)
        return concat


class InceptionB(nn.Layer):
    """InceptionB module for InceptionV4."""
W
wuzewu 已提交
164

H
haoyuying 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    def __init__(self, name: str = None):
        super(InceptionB, self).__init__()
        self._pool = AvgPool2d(kernel_size=3, stride=1, padding=1)
        self._conv1 = ConvBNLayer(1024, 128, 1, act="relu", name="inception_b" + name + "_1x1")
        self._conv2 = ConvBNLayer(1024, 384, 1, act="relu", name="inception_b" + name + "_1x1_2")
        self._conv3_1 = ConvBNLayer(1024, 192, 1, act="relu", name="inception_b" + name + "_1x7_reduce")
        self._conv3_2 = ConvBNLayer(192, 224, (1, 7), padding=(0, 3), act="relu", name="inception_b" + name + "_1x7")
        self._conv3_3 = ConvBNLayer(224, 256, (7, 1), padding=(3, 0), act="relu", name="inception_b" + name + "_7x1")
        self._conv4_1 = ConvBNLayer(1024, 192, 1, act="relu", name="inception_b" + name + "_7x1_2_reduce")
        self._conv4_2 = ConvBNLayer(192, 192, (1, 7), padding=(0, 3), act="relu", name="inception_b" + name + "_1x7_2")
        self._conv4_3 = ConvBNLayer(192, 224, (7, 1), padding=(3, 0), act="relu", name="inception_b" + name + "_7x1_2")
        self._conv4_4 = ConvBNLayer(224, 224, (1, 7), padding=(0, 3), act="relu", name="inception_b" + name + "_1x7_3")
        self._conv4_5 = ConvBNLayer(224, 256, (7, 1), padding=(3, 0), act="relu", name="inception_b" + name + "_7x1_3")

    def forward(self, inputs: paddle.Tensor):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)

        conv2 = self._conv2(inputs)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)

        conv4 = self._conv4_1(inputs)
        conv4 = self._conv4_2(conv4)
        conv4 = self._conv4_3(conv4)
        conv4 = self._conv4_4(conv4)
        conv4 = self._conv4_5(conv4)

        concat = paddle.concat([conv1, conv2, conv3, conv4], axis=1)
        return concat


class ReductionB(nn.Layer):
    """ReductionB module for InceptionV4."""
W
wuzewu 已提交
201

H
haoyuying 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    def __init__(self):
        super(ReductionB, self).__init__()
        self._pool = MaxPool2d(kernel_size=3, stride=2, padding=0)
        self._conv2_1 = ConvBNLayer(1024, 192, 1, act="relu", name="reduction_b_3x3_reduce")
        self._conv2_2 = ConvBNLayer(192, 192, 3, stride=2, act="relu", name="reduction_b_3x3")
        self._conv3_1 = ConvBNLayer(1024, 256, 1, act="relu", name="reduction_b_1x7_reduce")
        self._conv3_2 = ConvBNLayer(256, 256, (1, 7), padding=(0, 3), act="relu", name="reduction_b_1x7")
        self._conv3_3 = ConvBNLayer(256, 320, (7, 1), padding=(3, 0), act="relu", name="reduction_b_7x1")
        self._conv3_4 = ConvBNLayer(320, 320, 3, stride=2, act="relu", name="reduction_b_3x3_2")

    def forward(self, inputs: paddle.Tensor):
        pool1 = self._pool(inputs)

        conv2 = self._conv2_1(inputs)
        conv2 = self._conv2_2(conv2)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
        conv3 = self._conv3_4(conv3)

        concat = paddle.concat([pool1, conv2, conv3], axis=1)

        return concat


class InceptionC(nn.Layer):
    """InceptionC module for InceptionV4."""
W
wuzewu 已提交
230

H
haoyuying 已提交
231 232 233 234 235 236 237 238 239 240
    def __init__(self, name: str = None):
        super(InceptionC, self).__init__()
        self._pool = AvgPool2d(kernel_size=3, stride=1, padding=1)
        self._conv1 = ConvBNLayer(1536, 256, 1, act="relu", name="inception_c" + name + "_1x1")
        self._conv2 = ConvBNLayer(1536, 256, 1, act="relu", name="inception_c" + name + "_1x1_2")
        self._conv3_0 = ConvBNLayer(1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_3")
        self._conv3_1 = ConvBNLayer(384, 256, (1, 3), padding=(0, 1), act="relu", name="inception_c" + name + "_1x3")
        self._conv3_2 = ConvBNLayer(384, 256, (3, 1), padding=(1, 0), act="relu", name="inception_c" + name + "_3x1")
        self._conv4_0 = ConvBNLayer(1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_4")
        self._conv4_00 = ConvBNLayer(384, 448, (1, 3), padding=(0, 1), act="relu", name="inception_c" + name + "_1x3_2")
W
wuzewu 已提交
241 242
        self._conv4_000 = ConvBNLayer(
            448, 512, (3, 1), padding=(1, 0), act="relu", name="inception_c" + name + "_3x1_2")
H
haoyuying 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        self._conv4_1 = ConvBNLayer(512, 256, (1, 3), padding=(0, 1), act="relu", name="inception_c" + name + "_1x3_3")
        self._conv4_2 = ConvBNLayer(512, 256, (3, 1), padding=(1, 0), act="relu", name="inception_c" + name + "_3x1_3")

    def forward(self, inputs: paddle.Tensor):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)

        conv2 = self._conv2(inputs)

        conv3 = self._conv3_0(inputs)
        conv3_1 = self._conv3_1(conv3)
        conv3_2 = self._conv3_2(conv3)

        conv4 = self._conv4_0(inputs)
        conv4 = self._conv4_00(conv4)
        conv4 = self._conv4_000(conv4)
        conv4_1 = self._conv4_1(conv4)
        conv4_2 = self._conv4_2(conv4)

        concat = paddle.concat([conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2], axis=1)

        return concat


W
wuzewu 已提交
267 268 269 270 271 272 273 274 275
@moduleinfo(
    name="inceptionv4_imagenet",
    type="CV/classification",
    author="paddlepaddle",
    author_email="",
    summary="InceptionV4_imagenet is a classification model, "
    "this module is trained with Imagenet dataset.",
    version="1.1.0",
    meta=ImageClassifierModule)
H
haoyuying 已提交
276 277
class InceptionV4(nn.Layer):
    """InceptionV4 model."""
W
wuzewu 已提交
278

H
haoyuying 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
        super(InceptionV4, self).__init__()
        self._inception_stem = InceptionStem()

        self._inceptionA_1 = InceptionA(name="1")
        self._inceptionA_2 = InceptionA(name="2")
        self._inceptionA_3 = InceptionA(name="3")
        self._inceptionA_4 = InceptionA(name="4")
        self._reductionA = ReductionA()

        self._inceptionB_1 = InceptionB(name="1")
        self._inceptionB_2 = InceptionB(name="2")
        self._inceptionB_3 = InceptionB(name="3")
        self._inceptionB_4 = InceptionB(name="4")
        self._inceptionB_5 = InceptionB(name="5")
        self._inceptionB_6 = InceptionB(name="6")
        self._inceptionB_7 = InceptionB(name="7")
        self._reductionB = ReductionB()

        self._inceptionC_1 = InceptionC(name="1")
        self._inceptionC_2 = InceptionC(name="2")
        self._inceptionC_3 = InceptionC(name="3")

        self.avg_pool = AdaptiveAvgPool2d(1)
        self._drop = Dropout(p=0.2, mode="downscale_in_infer")
        stdv = 1.0 / math.sqrt(1536 * 1.0)
W
wuzewu 已提交
305 306 307 308 309
        self.out = Linear(
            1536,
            class_dim,
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv), name="final_fc_weights"),
            bias_attr=ParamAttr(name="final_fc_offset"))
H
haoyuying 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

        if load_checkpoint is not None:
            model_dict = paddle.load(load_checkpoint)[0]
            self.set_dict(model_dict)
            print("load custom checkpoint success")

        else:
            checkpoint = os.path.join(self.directory, 'inceptionv4_imagenet.pdparams')
            if not os.path.exists(checkpoint):
                os.system(
                    'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/inceptionv4_imagenet.pdparams -O'
                    + checkpoint)
            model_dict = paddle.load(checkpoint)[0]
            self.set_dict(model_dict)
            print("load pretrained checkpoint success")

    def forward(self, inputs):
        x = self._inception_stem(inputs)

        x = self._inceptionA_1(x)
        x = self._inceptionA_2(x)
        x = self._inceptionA_3(x)
        x = self._inceptionA_4(x)
        x = self._reductionA(x)

        x = self._inceptionB_1(x)
        x = self._inceptionB_2(x)
        x = self._inceptionB_3(x)
        x = self._inceptionB_4(x)
        x = self._inceptionB_5(x)
        x = self._inceptionB_6(x)
        x = self._inceptionB_7(x)
        x = self._reductionB(x)

        x = self._inceptionC_1(x)
        x = self._inceptionC_2(x)
        x = self._inceptionC_3(x)

        x = self.avg_pool(x)
        x = paddle.squeeze(x, axis=[2, 3])
        x = self._drop(x)
        x = self.out(x)
        return x