README.md 3.6 KB
Newer Older
L
Leowolfking 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
## 模型概述

falsr_c是基于Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search设计的轻量化超分辨模型。该模型使用多目标方法处理超分问题,同时使用基于混合控制器的弹性搜索策略来提升模型性能。该模型提供的超分倍数为2倍。

## 命令行预测

```
$ hub run falsr_c --input_path "/PATH/TO/IMAGE"

```

## API

```python
def reconstruct(self,
                images=None,
                paths=None,
                use_gpu=False,
                visualization=False,
                output_dir="falsr_c_output")
```

预测API,用于图像超分辨率。

**参数**

* images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\],BGR格式;
* paths (list\[str\]): 图片的路径;
* use\_gpu (bool): 是否使用 GPU预测,如果使用GPU预测,则在预测之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置;
* visualization (bool): 是否将识别结果保存为图片文件;
* output\_dir (str): 图片的保存路径。

**返回**

* res (list\[dict\]): 识别结果的列表,列表中每一个元素为 dict,关键字有 'save\_path', 'data',对应的取值为:
  * save\_path (str, optional): 可视化图片的保存路径(仅当visualization=True时存在);
  * data (numpy.ndarray): 超分辨后图像。

```python
def save_inference_model(self,
                         dirname='falsr_c_save_model',
                         model_filename=None,
                         params_filename=None,
                         combined=False)
```

将模型保存到指定路径。

**参数**

* dirname: 存在模型的目录名称
* model\_filename: 模型文件名称,默认为\_\_model\_\_
* params\_filename: 参数文件名称,默认为\_\_params\_\_(仅当`combined`为True时生效)
* combined: 是否将参数保存到统一的一个文件中

## 代码示例

```python
import cv2
import paddlehub as hub

sr_model = hub.Module('falsr_c')
im = cv2.imread('/PATH/TO/IMAGE').astype('float32')
#visualization=True可以用于查看超分图片效果,可设置为False提升运行速度。
res = sr_model.reconstruct(images=[im], visualization=True)
print(res[0]['data'])
sr_model.save_inference_model()
```

## 服务部署

PaddleHub Serving可以部署一个图像超分的在线服务。

## 第一步:启动PaddleHub Serving

运行启动命令:

```shell
$ hub serving start -m falsr_c
```

这样就完成了一个超分任务的服务化API的部署,默认端口号为8866。

**NOTE:** 如使用GPU预测,则需要在启动服务之前,设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。

## 第二步:发送预测请求

配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果

```python
import requests
import json
import base64

import cv2
import numpy as np

def cv2_to_base64(image):
    data = cv2.imencode('.jpg', image)[1]
    return base64.b64encode(data.tostring()).decode('utf8')
def base64_to_cv2(b64str):
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data

# 发送HTTP请求
org_im = cv2.imread('/PATH/TO/IMAGE')
data = {'images':[cv2_to_base64(org_im)]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/falsr_c"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
sr = base64_to_cv2(r.json()["results"][0]['data'])
cv2.imwrite('falsr_c_X2.png', sr)
print("save image as falsr_c_X2.png")
```

### 查看代码

https://github.com/xiaomi-automl/FALSR


### 依赖

paddlepaddle >= 1.8.0

paddlehub >= 1.7.1