README.md 50.9 KB
Newer Older
S
shinichiye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
English | [简体中文](README_ch.md)

# CONTENTS
|[Image](#Image) (212)|[Text](#Text) (130)|[Audio](#Audio) (15)|[Video](#Video) (8)|[Industrial Application](#Industrial-Application) (1)|
|--|--|--|--|--|
|[Image Classification](#Image-Classification) (108)|[Text Generation](#Text-Generation) (17)| [Voice Cloning](#Voice-Cloning) (2)|[Video Classification](#Video-Classification) (5)| [Meter Detection](#Meter-Detection) (1)|
|[Image Generation](#Image-Generation) (26)|[Word Embedding](#Word-Embedding) (62)|[Text to Speech](#Text-to-Speech) (5)|[Video Editing](#Video-Editing) (1)|-|
|[Keypoint Detection](#Keypoint-Detection) (5)|[Machine Translation](#Machine-Translation) (2)|[Automatic Speech Recognition](#Automatic-Speech-Recognition) (5)|[Multiple Object tracking](#Multiple-Object-tracking) (2)|-|
|[Semantic Segmentation](#Semantic-Segmentation) (25)|[Language Model](#Language-Model) (30)|[Audio Classification](#Audio-Classification) (3)| -|-|
|[Face Detection](#Face-Detection) (7)|[Sentiment Analysis](#Sentiment-Analysis) (7)|-|-|-|
|[Text Recognition](#Text-Recognition) (17)|[Syntactic Analysis](#Syntactic-Analysis) (1)|-|-|-|
|[Image Editing](#Image-Editing) (8)|[Simultaneous Translation](#Simultaneous-Translation) (5)|-|-|-|
|[Instance Segmentation](#Instance-Segmentation) (1)|[Lexical Analysis](#Lexical-Analysis) (2)|-|-|-|
|[Object Detection](#Object-Detection) (13)|[Punctuation Restoration](#Punctuation-Restoration) (1)|-|-|-|
|[Depth Estimation](#Depth-Estimation) (2)|[Text Review](#Text-Review) (3)|-|-|-|

## Image
  - ### Image Classification


A
AK391 已提交
21 22
|module|Network|Dataset|Introduction|Hugging Face Spaces|
|--|--|--|--|--|
S
shinichiye 已提交
23
|[DriverStatusRecognition](image/classification/DriverStatusRecognition)|MobileNetV3_small_ssld|分心司机检测数据集||
A
AK391 已提交
24 25
|[mobilenet_v2_animals](image/classification/mobilenet_v2_animals)|MobileNet_v2|百度自建动物数据集|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/mobilenet_v2_animals) |
|[repvgg_a1_imagenet](image/classification/repvgg_a1_imagenet)|RepVGG|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/repvgg_a1_imagenet) |
A
AK391 已提交
26
|[repvgg_a0_imagenet](image/classification/repvgg_a0_imagenet)|RepVGG|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/repvgg_a0_imagenet) |
A
AK391 已提交
27
|[resnext152_32x4d_imagenet](image/classification/resnext152_32x4d_imagenet)|ResNeXt|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/resnext152_32x4d_imagenet) |
A
AK391 已提交
28
|[resnet_v2_152_imagenet](image/classification/resnet_v2_152_imagenet)|ResNet V2|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/resnet_v2_152_imagenet) |
A
AK391 已提交
29
|[resnet50_vd_animals](image/classification/resnet50_vd_animals)|ResNet50_vd|百度自建动物数据集|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/resnet50_vd_animals) |
S
shinichiye 已提交
30
|[food_classification](image/classification/food_classification)|ResNet50_vd_ssld|美食数据集||
A
AK391 已提交
31
|[mobilenet_v3_large_imagenet_ssld](image/classification/mobilenet_v3_large_imagenet_ssld)|Mobilenet_v3_large|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/mobilenet_v3_large_imagenet_ssld) |
S
shinichiye 已提交
32
|[resnext152_vd_32x4d_imagenet](image/classification/resnext152_vd_32x4d_imagenet)||||
A
AK391 已提交
33
|[ghostnet_x1_3_imagenet_ssld](image/classification/ghostnet_x1_3_imagenet_ssld)|GhostNet|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/ghostnet_x1_3_imagenet_ssld) |
A
AK391 已提交
34
|[rexnet_1_5_imagenet](image/classification/rexnet_1_5_imagenet)|ReXNet|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/rexnet_1_5_imagenet) |
A
AK391 已提交
35
|[resnext50_64x4d_imagenet](image/classification/resnext50_64x4d_imagenet)|ResNeXt|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/resnext50_64x4d_imagenet) |
A
AK391 已提交
36
|[resnext101_64x4d_imagenet](image/classification/resnext101_64x4d_imagenet)|ResNeXt|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/resnext101_64x4d_imagenet) |
37
|[efficientnetb0_imagenet](image/classification/efficientnetb0_imagenet)|EfficientNet|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/efficientnetb0_imagenet) |
38
|[efficientnetb1_imagenet](image/classification/efficientnetb1_imagenet)|EfficientNet|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/efficientnetb1_imagenet) |
A
AK391 已提交
39
|[mobilenet_v2_imagenet_ssld](image/classification/mobilenet_v2_imagenet_ssld)|Mobilenet_v2|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/mobilenet_v2_imagenet_ssld) |
A
AK391 已提交
40
|[resnet50_vd_dishes](image/classification/resnet50_vd_dishes)|ResNet50_vd|百度自建菜品数据集|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/resnet50_vd_dishes) |
A
AK391 已提交
41
|[pnasnet_imagenet](image/classification/pnasnet_imagenet)|PNASNet|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/pnasnet_imagenet) |
A
AK391 已提交
42
|[rexnet_2_0_imagenet](image/classification/rexnet_2_0_imagenet)|ReXNet|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/rexnet_2_0_imagenet) |
A
AK391 已提交
43
|[SnakeIdentification](image/classification/SnakeIdentification)|ResNet50_vd_ssld|蛇种数据集|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/SnakeIdentification) |
A
AK391 已提交
44
|[hrnet40_imagenet](image/classification/hrnet40_imagenet)|HRNet|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/hrnet40_imagenet) |
A
AK391 已提交
45
|[resnet_v2_34_imagenet](image/classification/resnet_v2_34_imagenet)|ResNet V2|ImageNet-2012|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/resnet_v2_34_imagenet) |
S
shinichiye 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|[mobilenet_v2_dishes](image/classification/mobilenet_v2_dishes)|MobileNet_v2|百度自建菜品数据集||
|[resnext101_vd_32x4d_imagenet](image/classification/resnext101_vd_32x4d_imagenet)|ResNeXt|ImageNet-2012||
|[repvgg_b2g4_imagenet](image/classification/repvgg_b2g4_imagenet)|RepVGG|ImageNet-2012||
|[fix_resnext101_32x48d_wsl_imagenet](image/classification/fix_resnext101_32x48d_wsl_imagenet)|ResNeXt|ImageNet-2012||
|[vgg13_imagenet](image/classification/vgg13_imagenet)|VGG|ImageNet-2012||
|[se_resnext101_32x4d_imagenet](image/classification/se_resnext101_32x4d_imagenet)|SE_ResNeXt|ImageNet-2012||
|[hrnet30_imagenet](image/classification/hrnet30_imagenet)|HRNet|ImageNet-2012||
|[ghostnet_x1_3_imagenet](image/classification/ghostnet_x1_3_imagenet)|GhostNet|ImageNet-2012||
|[dpn107_imagenet](image/classification/dpn107_imagenet)|DPN|ImageNet-2012||
|[densenet161_imagenet](image/classification/densenet161_imagenet)|DenseNet|ImageNet-2012||
|[vgg19_imagenet](image/classification/vgg19_imagenet)|vgg19_imagenet|ImageNet-2012||
|[mobilenet_v2_imagenet](image/classification/mobilenet_v2_imagenet)|Mobilenet_v2|ImageNet-2012||
|[resnet50_vd_10w](image/classification/resnet50_vd_10w)|ResNet_vd|百度自建数据集||
|[resnet_v2_101_imagenet](image/classification/resnet_v2_101_imagenet)|ResNet V2 101|ImageNet-2012||
|[darknet53_imagenet](image/classification/darknet53_imagenet)|DarkNet|ImageNet-2012||
|[se_resnext50_32x4d_imagenet](image/classification/se_resnext50_32x4d_imagenet)|SE_ResNeXt|ImageNet-2012||
|[se_hrnet64_imagenet_ssld](image/classification/se_hrnet64_imagenet_ssld)|HRNet|ImageNet-2012||
|[resnext101_32x16d_wsl](image/classification/resnext101_32x16d_wsl)|ResNeXt_wsl|ImageNet-2012||
|[hrnet18_imagenet](image/classification/hrnet18_imagenet)|HRNet|ImageNet-2012||
|[spinalnet_res101_gemstone](image/classification/spinalnet_res101_gemstone)|resnet101|gemstone||
|[densenet264_imagenet](image/classification/densenet264_imagenet)|DenseNet|ImageNet-2012||
|[resnext50_vd_32x4d_imagenet](image/classification/resnext50_vd_32x4d_imagenet)|ResNeXt_vd|ImageNet-2012||
|[SpinalNet_Gemstones](image/classification/SpinalNet_Gemstones)||||
|[spinalnet_vgg16_gemstone](image/classification/spinalnet_vgg16_gemstone)|vgg16|gemstone||
|[xception71_imagenet](image/classification/xception71_imagenet)|Xception|ImageNet-2012||
|[repvgg_b2_imagenet](image/classification/repvgg_b2_imagenet)|RepVGG|ImageNet-2012||
|[dpn68_imagenet](image/classification/dpn68_imagenet)|DPN|ImageNet-2012||
|[alexnet_imagenet](image/classification/alexnet_imagenet)|AlexNet|ImageNet-2012||
|[rexnet_1_3_imagenet](image/classification/rexnet_1_3_imagenet)|ReXNet|ImageNet-2012||
|[hrnet64_imagenet](image/classification/hrnet64_imagenet)|HRNet|ImageNet-2012||
|[efficientnetb7_imagenet](image/classification/efficientnetb7_imagenet)|EfficientNet|ImageNet-2012||
|[efficientnetb0_small_imagenet](image/classification/efficientnetb0_small_imagenet)|EfficientNet|ImageNet-2012||
|[efficientnetb6_imagenet](image/classification/efficientnetb6_imagenet)|EfficientNet|ImageNet-2012||
|[hrnet48_imagenet](image/classification/hrnet48_imagenet)|HRNet|ImageNet-2012||
|[rexnet_3_0_imagenet](image/classification/rexnet_3_0_imagenet)|ReXNet|ImageNet-2012||
|[shufflenet_v2_imagenet](image/classification/shufflenet_v2_imagenet)|ShuffleNet V2|ImageNet-2012||
|[ghostnet_x0_5_imagenet](image/classification/ghostnet_x0_5_imagenet)|GhostNet|ImageNet-2012||
|[inception_v4_imagenet](image/classification/inception_v4_imagenet)|Inception_V4|ImageNet-2012||
|[resnext101_vd_64x4d_imagenet](image/classification/resnext101_vd_64x4d_imagenet)|ResNeXt_vd|ImageNet-2012||
|[densenet201_imagenet](image/classification/densenet201_imagenet)|DenseNet|ImageNet-2012||
|[vgg16_imagenet](image/classification/vgg16_imagenet)|VGG|ImageNet-2012||
|[mobilenet_v3_small_imagenet_ssld](image/classification/mobilenet_v3_small_imagenet_ssld)|Mobilenet_v3_Small|ImageNet-2012||
|[hrnet18_imagenet_ssld](image/classification/hrnet18_imagenet_ssld)|HRNet|ImageNet-2012||
|[resnext152_64x4d_imagenet](image/classification/resnext152_64x4d_imagenet)|ResNeXt|ImageNet-2012||
|[efficientnetb3_imagenet](image/classification/efficientnetb3_imagenet)|EfficientNet|ImageNet-2012||
|[efficientnetb2_imagenet](image/classification/efficientnetb2_imagenet)|EfficientNet|ImageNet-2012||
|[repvgg_b1g4_imagenet](image/classification/repvgg_b1g4_imagenet)|RepVGG|ImageNet-2012||
|[resnext101_32x4d_imagenet](image/classification/resnext101_32x4d_imagenet)|ResNeXt|ImageNet-2012||
|[resnext50_32x4d_imagenet](image/classification/resnext50_32x4d_imagenet)|ResNeXt|ImageNet-2012||
|[repvgg_a2_imagenet](image/classification/repvgg_a2_imagenet)|RepVGG|ImageNet-2012||
|[resnext152_vd_64x4d_imagenet](image/classification/resnext152_vd_64x4d_imagenet)|ResNeXt_vd|ImageNet-2012||
|[xception41_imagenet](image/classification/xception41_imagenet)|Xception|ImageNet-2012||
|[googlenet_imagenet](image/classification/googlenet_imagenet)|GoogleNet|ImageNet-2012||
|[resnet50_vd_imagenet_ssld](image/classification/resnet50_vd_imagenet_ssld)|ResNet_vd|ImageNet-2012||
|[repvgg_b1_imagenet](image/classification/repvgg_b1_imagenet)|RepVGG|ImageNet-2012||
|[repvgg_b0_imagenet](image/classification/repvgg_b0_imagenet)|RepVGG|ImageNet-2012||
|[resnet_v2_50_imagenet](image/classification/resnet_v2_50_imagenet)|ResNet V2|ImageNet-2012||
|[rexnet_1_0_imagenet](image/classification/rexnet_1_0_imagenet)|ReXNet|ImageNet-2012||
|[resnet_v2_18_imagenet](image/classification/resnet_v2_18_imagenet)|ResNet V2|ImageNet-2012||
|[resnext101_32x8d_wsl](image/classification/resnext101_32x8d_wsl)|ResNeXt_wsl|ImageNet-2012||
|[efficientnetb4_imagenet](image/classification/efficientnetb4_imagenet)|EfficientNet|ImageNet-2012||
|[efficientnetb5_imagenet](image/classification/efficientnetb5_imagenet)|EfficientNet|ImageNet-2012||
|[repvgg_b1g2_imagenet](image/classification/repvgg_b1g2_imagenet)|RepVGG|ImageNet-2012||
|[resnext101_32x48d_wsl](image/classification/resnext101_32x48d_wsl)|ResNeXt_wsl|ImageNet-2012||
|[resnet50_vd_wildanimals](image/classification/resnet50_vd_wildanimals)|ResNet_vd|IFAW 自建野生动物数据集||
|[nasnet_imagenet](image/classification/nasnet_imagenet)|NASNet|ImageNet-2012||
|[se_resnet18_vd_imagenet](image/classification/se_resnet18_vd_imagenet)||||
|[spinalnet_res50_gemstone](image/classification/spinalnet_res50_gemstone)|resnet50|gemstone||
|[resnext50_vd_64x4d_imagenet](image/classification/resnext50_vd_64x4d_imagenet)|ResNeXt_vd|ImageNet-2012||
|[resnext101_32x32d_wsl](image/classification/resnext101_32x32d_wsl)|ResNeXt_wsl|ImageNet-2012||
|[dpn131_imagenet](image/classification/dpn131_imagenet)|DPN|ImageNet-2012||
|[xception65_imagenet](image/classification/xception65_imagenet)|Xception|ImageNet-2012||
|[repvgg_b3g4_imagenet](image/classification/repvgg_b3g4_imagenet)|RepVGG|ImageNet-2012||
|[marine_biometrics](image/classification/marine_biometrics)|ResNet50_vd_ssld|Fish4Knowledge||
|[res2net101_vd_26w_4s_imagenet](image/classification/res2net101_vd_26w_4s_imagenet)|Res2Net|ImageNet-2012||
|[dpn98_imagenet](image/classification/dpn98_imagenet)|DPN|ImageNet-2012||
|[resnet18_vd_imagenet](image/classification/resnet18_vd_imagenet)|ResNet_vd|ImageNet-2012||
|[densenet121_imagenet](image/classification/densenet121_imagenet)|DenseNet|ImageNet-2012||
|[vgg11_imagenet](image/classification/vgg11_imagenet)|VGG|ImageNet-2012||
|[hrnet44_imagenet](image/classification/hrnet44_imagenet)|HRNet|ImageNet-2012||
|[densenet169_imagenet](image/classification/densenet169_imagenet)|DenseNet|ImageNet-2012||
|[hrnet32_imagenet](image/classification/hrnet32_imagenet)|HRNet|ImageNet-2012||
|[dpn92_imagenet](image/classification/dpn92_imagenet)|DPN|ImageNet-2012||
|[ghostnet_x1_0_imagenet](image/classification/ghostnet_x1_0_imagenet)|GhostNet|ImageNet-2012||
|[hrnet48_imagenet_ssld](image/classification/hrnet48_imagenet_ssld)|HRNet|ImageNet-2012||



  - ### Image Generation

A
AK391 已提交
136 137
|module|Network|Dataset|Introduction| Huggingface Spaces Demo|
|--|--|--|--|--|
S
shinichiye 已提交
138
|[pixel2style2pixel](image/Image_gan/gan/pixel2style2pixel/)|Pixel2Style2Pixel|-|人脸转正|
A
AK391 已提交
139
|[stgan_bald](image/Image_gan/gan/stgan_bald/)|STGAN|CelebA|秃头生成器| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/stgan_bald) |
S
shinichiye 已提交
140
|[styleganv2_editing](image/Image_gan/gan/styleganv2_editing)|StyleGAN V2|-|人脸编辑|
A
AK391 已提交
141
|[wav2lip](image/Image_gan/gan/wav2lip)|wav2lip|LRS2|唇形生成| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/wav2lip) |
S
shinichiye 已提交
142 143 144 145 146
|[attgan_celeba](image/Image_gan/attgan_celeba/)|AttGAN|Celeba|人脸编辑|
|[cyclegan_cityscapes](image/Image_gan/cyclegan_cityscapes)|CycleGAN|Cityscapes|实景图和语义分割结果互相转换|
|[stargan_celeba](image/Image_gan/stargan_celeba)|StarGAN|Celeba|人脸编辑|
|[stgan_celeba](image/Image_gan/stgan_celeba/)|STGAN|Celeba|人脸编辑|
|[ID_Photo_GEN](image/Image_gan/style_transfer/ID_Photo_GEN)|HRNet_W18|-|证件照生成|
A
AK391 已提交
147
|[Photo2Cartoon](image/Image_gan/style_transfer/Photo2Cartoon)|U-GAT-IT|cartoon_data|人脸卡通化|[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/photo2cartoon) |
S
shinichiye 已提交
148
|[U2Net_Portrait](image/Image_gan/style_transfer/U2Net_Portrait)|U^2Net|-|人脸素描化|
A
AK391 已提交
149
|[UGATIT_100w](image/Image_gan/style_transfer/UGATIT_100w)|U-GAT-IT|selfie2anime|人脸动漫化| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/UGATIT_100w) |
A
AK391 已提交
150
|[UGATIT_83w](image/Image_gan/style_transfer/UGATIT_83w)|U-GAT-IT|selfie2anime|人脸动漫化| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/UGATIT_83w) |
A
AK391 已提交
151
|[UGATIT_92w](image/Image_gan/style_transfer/UGATIT_92w)| U-GAT-IT|selfie2anime|人脸动漫化| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/UGATIT_92w) |
A
AK391 已提交
152 153 154
|[animegan_v1_hayao_60](image/Image_gan/style_transfer/animegan_v1_hayao_60)|AnimeGAN|The Wind Rises|图像风格迁移-宫崎骏| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v1_hayao_60) |
|[animegan_v2_hayao_64](image/Image_gan/style_transfer/animegan_v2_hayao_64)|AnimeGAN|The Wind Rises|图像风格迁移-宫崎骏| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v2_hayao_64) |
|[animegan_v2_hayao_99](image/Image_gan/style_transfer/animegan_v2_hayao_99)|AnimeGAN|The Wind Rises|图像风格迁移-宫崎骏| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v2_hayao_99) |
A
AK391 已提交
155 156
|[animegan_v2_paprika_54](image/Image_gan/style_transfer/animegan_v2_paprika_54)|AnimeGAN|Paprika|图像风格迁移-今敏| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v2_paprika_54) |
|[animegan_v2_paprika_74](image/Image_gan/style_transfer/animegan_v2_paprika_74)|AnimeGAN|Paprika|图像风格迁移-今敏| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v2_paprika_74) |
A
AK391 已提交
157
|[animegan_v2_paprika_97](image/Image_gan/style_transfer/animegan_v2_paprika_97)|AnimeGAN|Paprika|图像风格迁移-今敏| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v2_paprika_97) |
A
AK391 已提交
158
|[animegan_v2_paprika_98](image/Image_gan/style_transfer/animegan_v2_paprika_98)|AnimeGAN|Paprika|图像风格迁移-今敏| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v2_paprika_98) |
A
AK391 已提交
159
|[animegan_v2_shinkai_33](image/Image_gan/style_transfer/animegan_v2_shinkai_33)|AnimeGAN|Your Name, Weathering with you|图像风格迁移-新海诚| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v2_shinkai_33) |
A
AK391 已提交
160
|[animegan_v2_shinkai_53](image/Image_gan/style_transfer/animegan_v2_shinkai_53)|AnimeGAN|Your Name, Weathering with you|图像风格迁移-新海诚| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/animegan_v2_shinkai_53) |
A
AK391 已提交
161
|[msgnet](image/Image_gan/style_transfer/msgnet)|msgnet|COCO2014| |[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/msgnet) |
A
AK391 已提交
162
|[stylepro_artistic](image/Image_gan/style_transfer/stylepro_artistic)|StyleProNet|MS-COCO + WikiArt|艺术风格迁移| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/stylepro_artistic) |
S
shinichiye 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|stylegan_ffhq|StyleGAN|FFHQ|图像风格迁移|

  - ### Keypoint Detection

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[face_landmark_localization](image/keypoint_detection/face_landmark_localization)|Face_Landmark|AFW/AFLW|人脸关键点检测|
|[hand_pose_localization](image/keypoint_detection/hand_pose_localization)|-|MPII, NZSL|手部关键点检测|
|[openpose_body_estimation](image/keypoint_detection/openpose_body_estimation)|two-branch multi-stage CNN|MPII, COCO 2016|肢体关键点检测|
|[human_pose_estimation_resnet50_mpii](image/keypoint_detection/human_pose_estimation_resnet50_mpii)|Pose_Resnet50|MPII|人体骨骼关键点检测
|[openpose_hands_estimation](image/keypoint_detection/openpose_hands_estimation)|-|MPII, NZSL|手部关键点检测|

  - ### Semantic Segmentation

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[deeplabv3p_xception65_humanseg](image/semantic_segmentation/deeplabv3p_xception65_humanseg)|deeplabv3p|百度自建数据集|人像分割|
|[humanseg_server](image/semantic_segmentation/humanseg_server)|deeplabv3p|百度自建数据集|人像分割|
|[humanseg_mobile](image/semantic_segmentation/humanseg_mobile)|hrnet|百度自建数据集|人像分割-移动端前置摄像头|
|[humanseg_lite](image/semantic_segmentation/umanseg_lite)|shufflenet|百度自建数据集|轻量级人像分割-移动端实时|
|[ExtremeC3_Portrait_Segmentation](image/semantic_segmentation/ExtremeC3_Portrait_Segmentation)|ExtremeC3|EG1800, Baidu fashion dataset|轻量化人像分割|
|[SINet_Portrait_Segmentation](image/semantic_segmentation/SINet_Portrait_Segmentation)|SINet|EG1800, Baidu fashion dataset|轻量化人像分割|
|[FCN_HRNet_W18_Face_Seg](image/semantic_segmentation/FCN_HRNet_W18_Face_Seg)|FCN_HRNet_W18|-|人像分割|
|[ace2p](image/semantic_segmentation/ace2p)|ACE2P|LIP|人体解析|
|[Pneumonia_CT_LKM_PP](image/semantic_segmentation/Pneumonia_CT_LKM_PP)|U-NET+|连心医疗授权脱敏数据集|肺炎CT影像分析|
|[Pneumonia_CT_LKM_PP_lung](image/semantic_segmentation/Pneumonia_CT_LKM_PP_lung)|U-NET+|连心医疗授权脱敏数据集|肺炎CT影像分析|
|[ocrnet_hrnetw18_voc](image/semantic_segmentation/ocrnet_hrnetw18_voc)|ocrnet, hrnet|PascalVoc2012|
|[U2Net](image/semantic_segmentation/U2Net)|U^2Net|-|图像前景背景分割|
|[U2Netp](image/semantic_segmentation/U2Netp)|U^2Net|-|图像前景背景分割|
|[Extract_Line_Draft](image/semantic_segmentation/Extract_Line_Draft)|UNet|Pixiv|线稿提取|
|[unet_cityscapes](image/semantic_segmentation/unet_cityscapes)|UNet|cityscapes|
|[ocrnet_hrnetw18_cityscapes](image/semantic_segmentation/ocrnet_hrnetw18_cityscapes)|ocrnet_hrnetw18|cityscapes|
|[hardnet_cityscapes](image/semantic_segmentation/hardnet_cityscapes)|hardnet|cityscapes|
|[fcn_hrnetw48_voc](image/semantic_segmentation/fcn_hrnetw48_voc)|fcn_hrnetw48|PascalVoc2012|
|[fcn_hrnetw48_cityscapes](image/semantic_segmentation/fcn_hrnetw48_cityscapes)|fcn_hrnetw48|cityscapes|
|[fcn_hrnetw18_voc](image/semantic_segmentation/fcn_hrnetw18_voc)|fcn_hrnetw18|PascalVoc2012|
|[fcn_hrnetw18_cityscapes](image/semantic_segmentation/fcn_hrnetw18_cityscapes)|fcn_hrnetw18|cityscapes|
|[fastscnn_cityscapes](image/semantic_segmentation/fastscnn_cityscapes)|fastscnn|cityscapes|
|[deeplabv3p_resnet50_voc](image/semantic_segmentation/deeplabv3p_resnet50_voc)|deeplabv3p, resnet50|PascalVoc2012|
|[deeplabv3p_resnet50_cityscapes](image/semantic_segmentation/deeplabv3p_resnet50_cityscapes)|deeplabv3p, resnet50|cityscapes|
|[bisenetv2_cityscapes](image/semantic_segmentation/bisenetv2_cityscapes)|bisenetv2|cityscapes|



  - ### Face Detection

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[pyramidbox_lite_mobile](image/face_detection/pyramidbox_lite_mobile)|PyramidBox|WIDER FACE数据集 + 百度自采人脸数据集|轻量级人脸检测-移动端|
|[pyramidbox_lite_mobile_mask](image/face_detection/pyramidbox_lite_mobile_mask)|PyramidBox|WIDER FACE数据集 + 百度自采人脸数据集|轻量级人脸口罩检测-移动端|
|[pyramidbox_lite_server_mask](image/face_detection/pyramidbox_lite_server_mask)|PyramidBox|WIDER FACE数据集 + 百度自采人脸数据集|轻量级人脸口罩检测|
|[ultra_light_fast_generic_face_detector_1mb_640](image/face_detection/ultra_light_fast_generic_face_detector_1mb_640)|Ultra-Light-Fast-Generic-Face-Detector-1MB|WIDER FACE数据集|轻量级通用人脸检测-低算力设备|
|[ultra_light_fast_generic_face_detector_1mb_320](image/face_detection/ultra_light_fast_generic_face_detector_1mb_320)|Ultra-Light-Fast-Generic-Face-Detector-1MB|WIDER FACE数据集|轻量级通用人脸检测-低算力设备|
|[pyramidbox_lite_server](image/face_detection/pyramidbox_lite_server)|PyramidBox|WIDER FACE数据集 + 百度自采人脸数据集|轻量级人脸检测|
|[pyramidbox_face_detection](image/face_detection/pyramidbox_face_detection)|PyramidBox|WIDER FACE数据集|人脸检测|

  - ### Text Recognition

A
AK391 已提交
221 222 223
|module|Network|Dataset|Introduction|Huggingface Spaces Demo|
|--|--|--|--|--|
|[chinese_ocr_db_crnn_mobile](image/text_recognition/chinese_ocr_db_crnn_mobile)|Differentiable Binarization+RCNN|icdar2015数据集|中文文字识别|[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/chinese_ocr_db_crnn_mobile) |[chinese_text_detection_db_mobile](image/text_recognition/chinese_text_detection_db_mobile)|Differentiable Binarization|icdar2015数据集|中文文本检测|
S
shinichiye 已提交
224
|[chinese_text_detection_db_server](image/text_recognition/chinese_text_detection_db_server)|Differentiable Binarization|icdar2015数据集|中文文本检测|
A
AK391 已提交
225
|[chinese_ocr_db_crnn_server](image/text_recognition/chinese_ocr_db_crnn_server)|Differentiable Binarization+RCNN|icdar2015数据集|中文文字识别|[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/chinese_ocr_db_crnn_server) |
S
shinichiye 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|[Vehicle_License_Plate_Recognition](image/text_recognition/Vehicle_License_Plate_Recognition)|-|CCPD|车牌识别|
|[chinese_cht_ocr_db_crnn_mobile](image/text_recognition/chinese_cht_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|繁体中文文字识别|
|[japan_ocr_db_crnn_mobile](image/text_recognition/japan_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|日文文字识别|
|[korean_ocr_db_crnn_mobile](image/text_recognition/korean_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|韩文文字识别|
|[german_ocr_db_crnn_mobile](image/text_recognition/german_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|德文文字识别|
|[french_ocr_db_crnn_mobile](image/text_recognition/french_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|法文文字识别|
|[latin_ocr_db_crnn_mobile](image/text_recognition/latin_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|拉丁文文字识别|
|[cyrillic_ocr_db_crnn_mobile](image/text_recognition/cyrillic_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|斯拉夫文文字识别|
|[multi_languages_ocr_db_crnn](image/text_recognition/multi_languages_ocr_db_crnn)|Differentiable Binarization+RCNN|icdar2015数据集|多语言文字识别|
|[kannada_ocr_db_crnn_mobile](image/text_recognition/kannada_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|卡纳达文文字识别|
|[arabic_ocr_db_crnn_mobile](image/text_recognition/arabic_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|阿拉伯文文字识别|
|[telugu_ocr_db_crnn_mobile](image/text_recognition/telugu_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|泰卢固文文字识别|
|[devanagari_ocr_db_crnn_mobile](image/text_recognition/devanagari_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|梵文文字识别|
|[tamil_ocr_db_crnn_mobile](image/text_recognition/tamil_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015数据集|泰米尔文文字识别|


  - ### Image Editing

A
AK391 已提交
244 245
|module|Network|Dataset|Introduction|Huggingface Spaces Demo|
|--|--|--|--|--|
S
shinichiye 已提交
246
|[realsr](image/Image_editing/super_resolution/realsr)|LP-KPN|RealSR dataset|图像/视频超分-4倍|
A
AK391 已提交
247
|[deoldify](image/Image_editing/colorization/deoldify)|GAN|ILSVRC 2012|黑白照片/视频着色|[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/deoldify) |
S
shinichiye 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|[photo_restoration](image/Image_editing/colorization/photo_restoration)|基于deoldify和realsr模型|-|老照片修复|
|[user_guided_colorization](image/Image_editing/colorization/user_guided_colorization)|siggraph|ILSVRC 2012|图像着色|
|[falsr_c](image/Image_editing/super_resolution/falsr_c)|falsr_c| DIV2k|轻量化超分-2倍|
|[dcscn](image/Image_editing/super_resolution/dcscn)|dcscn| DIV2k|轻量化超分-2倍|
|[falsr_a](image/Image_editing/super_resolution/falsr_a)|falsr_a| DIV2k|轻量化超分-2倍|
|[falsr_b](image/Image_editing/super_resolution/falsr_b)|falsr_b|DIV2k|轻量化超分-2倍|

  - ### Instance Segmentation

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[solov2](image/instance_segmentation/solov2)|-|COCO2014|实例分割|

  - ### Object Detection

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[faster_rcnn_resnet50_coco2017](image/object_detection/faster_rcnn_resnet50_coco2017)|faster_rcnn|COCO2017||
|[ssd_vgg16_512_coco2017](image/object_detection/ssd_vgg16_512_coco2017)|SSD|COCO2017||
|[faster_rcnn_resnet50_fpn_venus](image/object_detection/faster_rcnn_resnet50_fpn_venus)|faster_rcnn|百度自建数据集|大规模通用目标检测|
|[ssd_vgg16_300_coco2017](image/object_detection/ssd_vgg16_300_coco2017)||||
|[yolov3_resnet34_coco2017](image/object_detection/yolov3_resnet34_coco2017)|YOLOv3|COCO2017||
|[yolov3_darknet53_pedestrian](image/object_detection/yolov3_darknet53_pedestrian)|YOLOv3|百度自建大规模行人数据集|行人检测|
|[yolov3_mobilenet_v1_coco2017](image/object_detection/yolov3_mobilenet_v1_coco2017)|YOLOv3|COCO2017||
|[ssd_mobilenet_v1_pascal](image/object_detection/ssd_mobilenet_v1_pascal)|SSD|PASCAL VOC||
|[faster_rcnn_resnet50_fpn_coco2017](image/object_detection/faster_rcnn_resnet50_fpn_coco2017)|faster_rcnn|COCO2017||
|[yolov3_darknet53_coco2017](image/object_detection/yolov3_darknet53_coco2017)|YOLOv3|COCO2017||
|[yolov3_darknet53_vehicles](image/object_detection/yolov3_darknet53_vehicles)|YOLOv3|百度自建大规模车辆数据集|车辆检测|
|[yolov3_darknet53_venus](image/object_detection/yolov3_darknet53_venus)|YOLOv3|百度自建数据集|大规模通用检测|
|[yolov3_resnet50_vd_coco2017](image/object_detection/yolov3_resnet50_vd_coco2017)|YOLOv3|COCO2017||

  - ### Depth Estimation

A
AK391 已提交
281 282
|module|Network|Dataset|Introduction|Huggingface Spaces Demo|
|--|--|--|--|--|
A
AK391 已提交
283
|[MiDaS_Large](image/depth_estimation/MiDaS_Large)|-|3D Movies, WSVD, ReDWeb, MegaDepth|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/MiDaS_Large) |
A
AK391 已提交
284
|[MiDaS_Small](image/depth_estimation/MiDaS_Small)|-|3D Movies, WSVD, ReDWeb, MegaDepth, etc.|| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/MiDaS_Small) |
S
shinichiye 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

## Text
  - ### Text Generation

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[ernie_gen](text/text_generation/ernie_gen)|ERNIE-GEN|-|面向生成任务的预训练-微调框架|
|[ernie_gen_poetry](text/text_generation/ernie_gen_poetry)|ERNIE-GEN|开源诗歌数据集|诗歌生成|
|[ernie_gen_couplet](text/text_generation/ernie_gen_couplet)|ERNIE-GEN|开源对联数据集|对联生成|
|[ernie_gen_lover_words](text/text_generation/ernie_gen_lover_words)|ERNIE-GEN|网络情诗、情话数据|情话生成|
|[ernie_tiny_couplet](text/text_generation/ernie_tiny_couplet)|Eernie_tiny|开源对联数据集|对联生成|
|[ernie_gen_acrostic_poetry](text/text_generation/ernie_gen_acrostic_poetry)|ERNIE-GEN|开源诗歌数据集|藏头诗生成|
|[Rumor_prediction](text/text_generation/Rumor_prediction)|-|新浪微博中文谣言数据|谣言预测|
|[plato-mini](text/text_generation/plato-mini)|Unified Transformer|十亿级别的中文对话数据|中文对话|
|[plato2_en_large](text/text_generation/plato2_en_large)|plato2|开放域多轮数据集|超大规模生成式对话|
|[plato2_en_base](text/text_generation/plato2_en_base)|plato2|开放域多轮数据集|超大规模生成式对话|
|[CPM_LM](text/text_generation/CPM_LM)|GPT-2|自建数据集|中文文本生成|
|[unified_transformer-12L-cn](text/text_generation/unified_transformer-12L-cn)|Unified Transformer|千万级别中文会话数据|人机多轮对话|
|[unified_transformer-12L-cn-luge](text/text_generation/unified_transformer-12L-cn-luge)|Unified Transformer|千言对话数据集|人机多轮对话|
|[reading_pictures_writing_poems](text/text_generation/reading_pictures_writing_poems)|多网络级联|-|看图写诗|
|[GPT2_CPM_LM](text/text_generation/GPT2_CPM_LM)|||问答类文本生成|
|[GPT2_Base_CN](text/text_generation/GPT2_Base_CN)|||问答类文本生成|

  - ### Word Embedding

<details><summary>expand</summary><div>

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[w2v_weibo_target_word-bigram_dim300](text/embedding/w2v_weibo_target_word-bigram_dim300)|w2v|weibo||
|[w2v_baidu_encyclopedia_target_word-ngram_1-2_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-ngram_1-2_dim300)|w2v|baidu_encyclopedia||
|[w2v_literature_target_word-word_dim300](text/embedding/w2v_literature_target_word-word_dim300)|w2v|literature||
|[word2vec_skipgram](text/embedding/word2vec_skipgram)|skip-gram|百度自建数据集||
|[w2v_sogou_target_word-char_dim300](text/embedding/w2v_sogou_target_word-char_dim300)|w2v|sogou||
|[w2v_weibo_target_bigram-char_dim300](text/embedding/w2v_weibo_target_bigram-char_dim300)|w2v|weibo||
|[w2v_zhihu_target_word-bigram_dim300](text/embedding/w2v_zhihu_target_word-bigram_dim300)|w2v|zhihu||
|[w2v_financial_target_word-word_dim300](text/embedding/w2v_financial_target_word-word_dim300)|w2v|financial||
|[w2v_wiki_target_word-word_dim300](text/embedding/w2v_wiki_target_word-word_dim300)|w2v|wiki||
|[w2v_baidu_encyclopedia_context_word-word_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-word_dim300)|w2v|baidu_encyclopedia||
|[w2v_weibo_target_word-word_dim300](text/embedding/w2v_weibo_target_word-word_dim300)|w2v|weibo||
|[w2v_zhihu_target_bigram-char_dim300](text/embedding/w2v_zhihu_target_bigram-char_dim300)|w2v|zhihu||
|[w2v_zhihu_target_word-word_dim300](text/embedding/w2v_zhihu_target_word-word_dim300)|w2v|zhihu||
|[w2v_people_daily_target_word-char_dim300](text/embedding/w2v_people_daily_target_word-char_dim300)|w2v|people_daily||
|[w2v_sikuquanshu_target_word-word_dim300](text/embedding/w2v_sikuquanshu_target_word-word_dim300)|w2v|sikuquanshu||
|[glove_twitter_target_word-word_dim200_en](text/embedding/glove_twitter_target_word-word_dim200_en)|fasttext|twitter||
|[fasttext_crawl_target_word-word_dim300_en](text/embedding/fasttext_crawl_target_word-word_dim300_en)|fasttext|crawl||
|[w2v_wiki_target_word-bigram_dim300](text/embedding/w2v_wiki_target_word-bigram_dim300)|w2v|wiki||
|[w2v_baidu_encyclopedia_context_word-character_char1-1_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-character_char1-1_dim300)|w2v|baidu_encyclopedia||
|[glove_wiki2014-gigaword_target_word-word_dim300_en](text/embedding/glove_wiki2014-gigaword_target_word-word_dim300_en)|glove|wiki2014-gigaword||
|[glove_wiki2014-gigaword_target_word-word_dim50_en](text/embedding/glove_wiki2014-gigaword_target_word-word_dim50_en)|glove|wiki2014-gigaword||
|[w2v_baidu_encyclopedia_context_word-ngram_2-2_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-ngram_2-2_dim300)|w2v|baidu_encyclopedia||
|[w2v_wiki_target_bigram-char_dim300](text/embedding/w2v_wiki_target_bigram-char_dim300)|w2v|wiki||
|[w2v_baidu_encyclopedia_target_word-character_char1-1_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-character_char1-1_dim300)|w2v|baidu_encyclopedia||
|[w2v_financial_target_bigram-char_dim300](text/embedding/w2v_financial_target_bigram-char_dim300)|w2v|financial||
|[glove_wiki2014-gigaword_target_word-word_dim200_en](text/embedding/glove_wiki2014-gigaword_target_word-word_dim200_en)|glove|wiki2014-gigaword||
|[w2v_financial_target_word-bigram_dim300](text/embedding/w2v_financial_target_word-bigram_dim300)|w2v|financial||
|[w2v_mixed-large_target_word-char_dim300](text/embedding/w2v_mixed-large_target_word-char_dim300)|w2v|mixed||
|[w2v_baidu_encyclopedia_target_word-wordPosition_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-wordPosition_dim300)|w2v|baidu_encyclopedia||
|[w2v_baidu_encyclopedia_context_word-ngram_1-3_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-ngram_1-3_dim300)|w2v|baidu_encyclopedia||
|[w2v_baidu_encyclopedia_target_word-wordLR_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-wordLR_dim300)|w2v|baidu_encyclopedia||
|[w2v_sogou_target_bigram-char_dim300](text/embedding/w2v_sogou_target_bigram-char_dim300)|w2v|sogou||
|[w2v_weibo_target_word-char_dim300](text/embedding/w2v_weibo_target_word-char_dim300)|w2v|weibo||
|[w2v_people_daily_target_word-word_dim300](text/embedding/w2v_people_daily_target_word-word_dim300)|w2v|people_daily||
|[w2v_zhihu_target_word-char_dim300](text/embedding/w2v_zhihu_target_word-char_dim300)|w2v|zhihu||
|[w2v_wiki_target_word-char_dim300](text/embedding/w2v_wiki_target_word-char_dim300)|w2v|wiki||
|[w2v_sogou_target_word-bigram_dim300](text/embedding/w2v_sogou_target_word-bigram_dim300)|w2v|sogou||
|[w2v_financial_target_word-char_dim300](text/embedding/w2v_financial_target_word-char_dim300)|w2v|financial||
|[w2v_baidu_encyclopedia_target_word-ngram_1-3_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-ngram_1-3_dim300)|w2v|baidu_encyclopedia||
|[glove_wiki2014-gigaword_target_word-word_dim100_en](text/embedding/glove_wiki2014-gigaword_target_word-word_dim100_en)|glove|wiki2014-gigaword||
|[w2v_baidu_encyclopedia_target_word-character_char1-4_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-character_char1-4_dim300)|w2v|baidu_encyclopedia||
|[w2v_sogou_target_word-word_dim300](text/embedding/w2v_sogou_target_word-word_dim300)|w2v|sogou||
|[w2v_literature_target_word-char_dim300](text/embedding/w2v_literature_target_word-char_dim300)|w2v|literature||
|[w2v_baidu_encyclopedia_target_bigram-char_dim300](text/embedding/w2v_baidu_encyclopedia_target_bigram-char_dim300)|w2v|baidu_encyclopedia||
|[w2v_baidu_encyclopedia_target_word-word_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-word_dim300)|w2v|baidu_encyclopedia||
|[glove_twitter_target_word-word_dim100_en](text/embedding/glove_twitter_target_word-word_dim100_en)|glove|crawl||
|[w2v_baidu_encyclopedia_target_word-ngram_2-2_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-ngram_2-2_dim300)|w2v|baidu_encyclopedia||
|[w2v_baidu_encyclopedia_context_word-character_char1-4_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-character_char1-4_dim300)|w2v|baidu_encyclopedia||
|[w2v_literature_target_bigram-char_dim300](text/embedding/w2v_literature_target_bigram-char_dim300)|w2v|literature||
|[fasttext_wiki-news_target_word-word_dim300_en](text/embedding/fasttext_wiki-news_target_word-word_dim300_en)|fasttext|wiki-news||
|[w2v_people_daily_target_word-bigram_dim300](text/embedding/w2v_people_daily_target_word-bigram_dim300)|w2v|people_daily||
|[w2v_mixed-large_target_word-word_dim300](text/embedding/w2v_mixed-large_target_word-word_dim300)|w2v|mixed||
|[w2v_people_daily_target_bigram-char_dim300](text/embedding/w2v_people_daily_target_bigram-char_dim300)|w2v|people_daily||
|[w2v_literature_target_word-bigram_dim300](text/embedding/w2v_literature_target_word-bigram_dim300)|w2v|literature||
|[glove_twitter_target_word-word_dim25_en](text/embedding/glove_twitter_target_word-word_dim25_en)|glove|twitter||
|[w2v_baidu_encyclopedia_context_word-ngram_1-2_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-ngram_1-2_dim300)|w2v|baidu_encyclopedia||
|[w2v_sikuquanshu_target_word-bigram_dim300](text/embedding/w2v_sikuquanshu_target_word-bigram_dim300)|w2v|sikuquanshu||
|[w2v_baidu_encyclopedia_context_word-character_char1-2_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-character_char1-2_dim300)|w2v|baidu_encyclopedia||
|[glove_twitter_target_word-word_dim50_en](text/embedding/glove_twitter_target_word-word_dim50_en)|glove|twitter||
|[w2v_baidu_encyclopedia_context_word-wordLR_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-wordLR_dim300)|w2v|baidu_encyclopedia||
|[w2v_baidu_encyclopedia_target_word-character_char1-2_dim300](text/embedding/w2v_baidu_encyclopedia_target_word-character_char1-2_dim300)|w2v|baidu_encyclopedia||
|[w2v_baidu_encyclopedia_context_word-wordPosition_dim300](text/embedding/w2v_baidu_encyclopedia_context_word-wordPosition_dim300)|w2v|baidu_encyclopedia||

</div></details>

  - ### Machine Translation

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[transformer_zh-en](text/machine_translation/transformer/transformer_zh-en)|Transformer|CWMT2021|中文译英文|
|[transformer_en-de](text/machine_translation/transformer/transformer_en-de)|Transformer|WMT14 EN-DE|英文译德文|

  - ### Language Model

<details><summary>expand</summary><div>

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[chinese_electra_small](text/language_model/chinese_electra_small)||||
|[chinese_electra_base](text/language_model/chinese_electra_base)||||
|[roberta-wwm-ext-large](text/language_model/roberta-wwm-ext-large)|roberta-wwm-ext-large|百度自建数据集||
|[chinese-bert-wwm-ext](text/language_model/chinese_bert_wwm_ext)|chinese-bert-wwm-ext|百度自建数据集||
|[lda_webpage](text/language_model/lda_webpage)|LDA|百度自建网页领域数据集||
|[lda_novel](text/language_model/lda_novel)||||
|[bert-base-multilingual-uncased](text/language_model/bert-base-multilingual-uncased)||||
|[rbt3](text/language_model/rbt3)||||
|[ernie_v2_eng_base](text/language_model/ernie_v2_eng_base)|ernie_v2_eng_base|百度自建数据集||
|[bert-base-multilingual-cased](text/language_model/bert-base-multilingual-cased)||||
|[rbtl3](text/language_model/rbtl3)||||
|[chinese-bert-wwm](text/language_model/chinese_bert_wwm)|chinese-bert-wwm|百度自建数据集||
|[bert-large-uncased](text/language_model/bert-large-uncased)||||
|[slda_novel](text/language_model/slda_novel)||||
|[slda_news](text/language_model/slda_news)||||
|[electra_small](text/language_model/electra_small)||||
|[slda_webpage](text/language_model/slda_webpage)||||
|[bert-base-cased](text/language_model/bert-base-cased)||||
|[slda_weibo](text/language_model/slda_weibo)||||
|[roberta-wwm-ext](text/language_model/roberta-wwm-ext)|roberta-wwm-ext|百度自建数据集||
|[bert-base-uncased](text/language_model/bert-base-uncased)||||
|[electra_large](text/language_model/electra_large)||||
|[ernie](text/language_model/ernie)|ernie-1.0|百度自建数据集||
|[simnet_bow](text/language_model/simnet_bow)|BOW|百度自建数据集||
|[ernie_tiny](text/language_model/ernie_tiny)|ernie_tiny|百度自建数据集||
|[bert-base-chinese](text/language_model/bert-base-chinese)|bert-base-chinese|百度自建数据集||
|[lda_news](text/language_model/lda_news)|LDA|百度自建新闻领域数据集||
|[electra_base](text/language_model/electra_base)||||
|[ernie_v2_eng_large](text/language_model/ernie_v2_eng_large)|ernie_v2_eng_large|百度自建数据集||
|[bert-large-cased](text/language_model/bert-large-cased)||||

</div></details>


  - ### Sentiment Analysis

A
AK391 已提交
428 429
|module|Network|Dataset|Introduction|Huggingface Spaces Demo|
|--|--|--|--|--|
S
shinichiye 已提交
430 431
|[ernie_skep_sentiment_analysis](text/sentiment_analysis/ernie_skep_sentiment_analysis)|SKEP|百度自建数据集|句子级情感分析|
|[emotion_detection_textcnn](text/sentiment_analysis/emotion_detection_textcnn)|TextCNN|百度自建数据集|对话情绪识别|
A
AK391 已提交
432
|[senta_bilstm](text/sentiment_analysis/senta_bilstm)|BiLSTM|百度自建数据集|中文情感倾向分析| [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/senta_bilstm) 
S
shinichiye 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|[senta_bow](text/sentiment_analysis/senta_bow)|BOW|百度自建数据集|中文情感倾向分析|
|[senta_gru](text/sentiment_analysis/senta_gru)|GRU|百度自建数据集|中文情感倾向分析|
|[senta_lstm](text/sentiment_analysis/senta_lstm)|LSTM|百度自建数据集|中文情感倾向分析|
|[senta_cnn](text/sentiment_analysis/senta_cnn)|CNN|百度自建数据集|中文情感倾向分析|

  - ### Syntactic Analysis

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[DDParser](text/syntactic_analysis/DDParser)|Deep Biaffine Attention|搜索query、网页文本、语音输入等数据|句法分析|

  - ### Simultaneous Translation

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[transformer_nist_wait_1](text/simultaneous_translation/stacl/transformer_nist_wait_1)|transformer|NIST 2008-中英翻译数据集|中译英-wait-1策略|
|[transformer_nist_wait_3](text/simultaneous_translation/stacl/transformer_nist_wait_3)|transformer|NIST 2008-中英翻译数据集|中译英-wait-3策略|
|[transformer_nist_wait_5](text/simultaneous_translation/stacl/transformer_nist_wait_5)|transformer|NIST 2008-中英翻译数据集|中译英-wait-5策略|
|[transformer_nist_wait_7](text/simultaneous_translation/stacl/transformer_nist_wait_7)|transformer|NIST 2008-中英翻译数据集|中译英-wait-7策略|
|[transformer_nist_wait_all](text/simultaneous_translation/stacl/transformer_nist_wait_all)|transformer|NIST 2008-中英翻译数据集|中译英-waitk=-1策略|


  - ### Lexical Analysis

A
AK391 已提交
457 458
|module|Network|Dataset|Introduction|Huggingface Spaces Demo|
|--|--|--|--|--|
L
Linjie Chen 已提交
459
|[jieba_paddle](text/lexical_analysis/jieba_paddle)|BiGRU+CRF|百度自建数据集|jieba使用Paddle搭建的切词网络(双向GRU)。同时支持jieba的传统切词方法,如精确模式、全模式、搜索引擎模式等切词模式。|
A
AK391 已提交
460
|[lac](text/lexical_analysis/lac)|BiGRU+CRF|百度自建数据集|百度自研联合的词法分析模型,能整体性地完成中文分词、词性标注、专名识别任务。在百度自建数据集上评测,LAC效果:Precision=88.0%,Recall=88.7%,F1-Score=88.4%。|[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/PaddlePaddle/lac) 
S
shinichiye 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

  - ### Punctuation Restoration

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[auto_punc](text/punctuation_restoration/auto_punc)|Ernie-1.0|WuDaoCorpora 2.0|自动添加7种标点符号|

  - ### Text Review

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[porn_detection_cnn](text/text_review/porn_detection_cnn)|CNN|百度自建数据集|色情检测,自动判别文本是否涉黄并给出相应的置信度,对文本中的色情描述、低俗交友、污秽文案进行识别|
|[porn_detection_gru](text/text_review/porn_detection_gru)|GRU|百度自建数据集|色情检测,自动判别文本是否涉黄并给出相应的置信度,对文本中的色情描述、低俗交友、污秽文案进行识别|
|[porn_detection_lstm](text/text_review/porn_detection_lstm)|LSTM|百度自建数据集|色情检测,自动判别文本是否涉黄并给出相应的置信度,对文本中的色情描述、低俗交友、污秽文案进行识别|

## Audio

A
akiirokaede 已提交
478
  - ### Voice cloning
S
shinichiye 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[ge2e_fastspeech2_pwgan](audio/voice_cloning/ge2e_fastspeech2_pwgan)|FastSpeech2|AISHELL-3|中文语音克隆|
|[lstm_tacotron2](audio/voice_cloning/lstm_tacotron2)|LSTM、Tacotron2、WaveFlow|AISHELL-3|中文语音克隆|

  - ### Text to Speech

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[transformer_tts_ljspeech](audio/tts/transformer_tts_ljspeech)|Transformer|LJSpeech-1.1|英文语音合成|
|[fastspeech_ljspeech](audio/tts/fastspeech_ljspeech)|FastSpeech|LJSpeech-1.1|英文语音合成|
|[fastspeech2_baker](audio/tts/fastspeech2_baker)|FastSpeech2|Chinese Standard Mandarin Speech Copus|中文语音合成|
|[fastspeech2_ljspeech](audio/tts/fastspeech2_ljspeech)|FastSpeech2|LJSpeech-1.1|英文语音合成|
|[deepvoice3_ljspeech](audio/tts/deepvoice3_ljspeech)|DeepVoice3|LJSpeech-1.1|英文语音合成|

  - ### Automatic Speech Recognition

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[deepspeech2_aishell](audio/asr/deepspeech2_aishell)|DeepSpeech2|AISHELL-1|中文语音识别|
|[deepspeech2_librispeech](audio/asr/deepspeech2_librispeech)|DeepSpeech2|LibriSpeech|英文语音识别|
K
KP 已提交
501
|[u2_conformer_aishell](audio/asr/u2_conformer_aishell)|Conformer|AISHELL-1|中文语音识别|
S
shinichiye 已提交
502
|[u2_conformer_wenetspeech](audio/asr/u2_conformer_wenetspeech)|Conformer|WenetSpeech|中文语音识别|
K
KP 已提交
503
|[u2_conformer_librispeech](audio/asr/u2_conformer_librispeech)|Conformer|LibriSpeech|英文语音识别|
S
shinichiye 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545


  - ### Audio Classification

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[panns_cnn6](audio/audio_classification/PANNs/cnn6)|PANNs|Google Audioset|主要包含4个卷积层和2个全连接层,模型参数为4.5M。经过预训练后,可以用于提取音频的embbedding,维度是512|
|[panns_cnn14](audio/audio_classification/PANNs/cnn14)|PANNs|Google Audioset|主要包含12个卷积层和2个全连接层,模型参数为79.6M。经过预训练后,可以用于提取音频的embbedding,维度是2048|
|[panns_cnn10](audio/audio_classification/PANNs/cnn10)|PANNs|Google Audioset|主要包含8个卷积层和2个全连接层,模型参数为4.9M。经过预训练后,可以用于提取音频的embbedding,维度是512|

## Video
  - ### Video Classification

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[videotag_tsn_lstm](video/classification/videotag_tsn_lstm)|TSN + AttentionLSTM|百度自建数据集|大规模短视频分类打标签|
|[tsn_kinetics400](video/classification/tsn_kinetics400)|TSN|Kinetics-400|视频分类|
|[tsm_kinetics400](video/classification/tsm_kinetics400)|TSM|Kinetics-400|视频分类|
|[stnet_kinetics400](video/classification/stnet_kinetics400)|StNet|Kinetics-400|视频分类|
|[nonlocal_kinetics400](video/classification/nonlocal_kinetics400)|Non-local|Kinetics-400|视频分类|


  - ### Video Editing

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[SkyAR](video/Video_editing/SkyAR)|UNet|UNet|视频换天|

  - ### Multiple Object tracking

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[fairmot_dla34](video/multiple_object_tracking/fairmot_dla34)|CenterNet|Caltech Pedestrian+CityPersons+CUHK-SYSU+PRW+ETHZ+MOT17|实时多目标跟踪|
|[jde_darknet53](video/multiple_object_tracking/jde_darknet53)|YOLOv3|Caltech Pedestrian+CityPersons+CUHK-SYSU+PRW+ETHZ+MOT17|多目标跟踪-兼顾精度和速度|

## Industrial Application

  - ### Meter Detection

|module|Network|Dataset|Introduction|
|--|--|--|--|
|[WatermeterSegmentation](image/semantic_segmentation/WatermeterSegmentation)|DeepLabV3|水表的数字表盘分割数据集|水表的数字表盘分割|