module.py 12.4 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# coding=utf-8
from __future__ import absolute_import

import ast
import argparse
import os
from functools import partial

import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
from paddlehub.common.paddle_helper import add_vars_prefix

from yolov3_resnet50_vd_coco2017.resnet import ResNet
from yolov3_resnet50_vd_coco2017.processor import load_label_info, postprocess, base64_to_cv2
from yolov3_resnet50_vd_coco2017.data_feed import reader
from yolov3_resnet50_vd_coco2017.yolo_head import MultiClassNMS, YOLOv3Head


@moduleinfo(
    name="yolov3_resnet50_vd_coco2017",
24
    version="1.0.2",
W
wuzewu 已提交
25
    type="CV/object_detection",
26 27
    summary=
    "Baidu's YOLOv3 model for object detection with backbone ResNet50, trained with dataset coco2017.",
W
wuzewu 已提交
28 29 30 31
    author="paddlepaddle",
    author_email="paddle-dev@baidu.com")
class YOLOv3ResNet50Coco2017(hub.Module):
    def _initialize(self):
32 33 34 35
        self.default_pretrained_model_path = os.path.join(
            self.directory, "yolov3_resnet50_model")
        self.label_names = load_label_info(
            os.path.join(self.directory, "label_file.txt"))
W
wuzewu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        self._set_config()

    def _set_config(self):
        """
        predictor config setting.
        """
        cpu_config = AnalysisConfig(self.default_pretrained_model_path)
        cpu_config.disable_glog_info()
        cpu_config.disable_gpu()
        cpu_config.switch_ir_optim(False)
        self.cpu_predictor = create_paddle_predictor(cpu_config)

        try:
            _places = os.environ["CUDA_VISIBLE_DEVICES"]
            int(_places[0])
            use_gpu = True
        except:
            use_gpu = False
        if use_gpu:
            gpu_config = AnalysisConfig(self.default_pretrained_model_path)
            gpu_config.disable_glog_info()
            gpu_config.enable_use_gpu(memory_pool_init_size_mb=500, device_id=0)
            self.gpu_predictor = create_paddle_predictor(gpu_config)

    def context(self, trainable=True, pretrained=True, get_prediction=False):
        """
        Distill the Head Features, so as to perform transfer learning.

        Args:
            trainable (bool): whether to set parameters trainable.
            pretrained (bool): whether to load default pretrained model.
            get_prediction (bool): whether to get prediction.

        Returns:
             inputs(dict): the input variables.
             outputs(dict): the output variables.
             context_prog (Program): the program to execute transfer learning.
        """
        context_prog = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(context_prog, startup_program):
            with fluid.unique_name.guard():
                # image
79 80
                image = fluid.layers.data(
                    name='image', shape=[3, 608, 608], dtype='float32')
W
wuzewu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93
                # backbone
                backbone = ResNet(
                    norm_type='sync_bn',
                    freeze_at=0,
                    freeze_norm=False,
                    norm_decay=0.,
                    dcn_v2_stages=[5],
                    depth=50,
                    variant='d',
                    feature_maps=[3, 4, 5])
                # body_feats
                body_feats = backbone(image)
                # im_size
94 95
                im_size = fluid.layers.data(
                    name='im_size', shape=[2], dtype='int32')
W
wuzewu 已提交
96 97 98
                # yolo_head
                yolo_head = YOLOv3Head(num_classes=80)
                # head_features
99 100
                head_features, body_features = yolo_head._get_outputs(
                    body_feats, is_train=trainable)
W
wuzewu 已提交
101 102 103 104 105 106 107 108

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())

                # var_prefix
                var_prefix = '@HUB_{}@'.format(self.name)
                # name of inputs
109 110 111 112
                inputs = {
                    'image': var_prefix + image.name,
                    'im_size': var_prefix + im_size.name
                }
W
wuzewu 已提交
113 114 115 116 117 118
                # name of outputs
                if get_prediction:
                    bbox_out = yolo_head.get_prediction(head_features, im_size)
                    outputs = {'bbox_out': [var_prefix + bbox_out.name]}
                else:
                    outputs = {
119 120 121 122
                        'head_features':
                        [var_prefix + var.name for var in head_features],
                        'body_features':
                        [var_prefix + var.name for var in body_features]
W
wuzewu 已提交
123 124 125 126 127
                    }
                # add_vars_prefix
                add_vars_prefix(context_prog, var_prefix)
                add_vars_prefix(fluid.default_startup_program(), var_prefix)
                # inputs
128 129 130 131
                inputs = {
                    key: context_prog.global_block().vars[value]
                    for key, value in inputs.items()
                }
W
wuzewu 已提交
132 133
                # outputs
                outputs = {
134 135 136 137
                    key: [
                        context_prog.global_block().vars[varname]
                        for varname in value
                    ]
W
wuzewu 已提交
138 139 140 141 142 143 144 145 146
                    for key, value in outputs.items()
                }
                # trainable
                for param in context_prog.global_block().iter_parameters():
                    param.trainable = trainable
                # pretrained
                if pretrained:

                    def _if_exist(var):
147 148 149
                        return os.path.exists(
                            os.path.join(self.default_pretrained_model_path,
                                         var.name))
W
wuzewu 已提交
150

151 152 153 154
                    fluid.io.load_vars(
                        exe,
                        self.default_pretrained_model_path,
                        predicate=_if_exist)
W
wuzewu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
                else:
                    exe.run(startup_program)

                return inputs, outputs, context_prog

    def object_detection(self,
                         paths=None,
                         images=None,
                         batch_size=1,
                         use_gpu=False,
                         output_dir='detection_result',
                         score_thresh=0.5,
                         visualization=True):
        """API of Object Detection.

        Args:
            paths (list[str]): The paths of images.
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]
            batch_size (int): batch size.
            use_gpu (bool): Whether to use gpu.
            output_dir (str): The path to store output images.
            visualization (bool): Whether to save image or not.
            score_thresh (float): threshold for object detecion.

        Returns:
            res (list[dict]): The result of coco2017 detecion. keys include 'data', 'save_path', the corresponding value is:
                data (dict): the result of object detection, keys include 'left', 'top', 'right', 'bottom', 'label', 'confidence', the corresponding value is:
                    left (float): The X coordinate of the upper left corner of the bounding box;
                    top (float): The Y coordinate of the upper left corner of the bounding box;
                    right (float): The X coordinate of the lower right corner of the bounding box;
                    bottom (float): The Y coordinate of the lower right corner of the bounding box;
                    label (str): The label of detection result;
                    confidence (float): The confidence of detection result.
                save_path (str, optional): The path to save output images.
        """
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
            except:
                raise RuntimeError(
196
                    "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
W
wuzewu 已提交
197 198 199 200 201 202 203 204 205 206 207
                )

        paths = paths if paths else list()
        data_reader = partial(reader, paths, images)
        batch_reader = fluid.io.batch(data_reader, batch_size=batch_size)
        res = []
        for iter_id, feed_data in enumerate(batch_reader()):
            feed_data = np.array(feed_data)
            image_tensor = PaddleTensor(np.array(list(feed_data[:, 0])))
            im_size_tensor = PaddleTensor(np.array(list(feed_data[:, 1])))
            if use_gpu:
208 209
                data_out = self.gpu_predictor.run(
                    [image_tensor, im_size_tensor])
W
wuzewu 已提交
210
            else:
211 212
                data_out = self.cpu_predictor.run(
                    [image_tensor, im_size_tensor])
W
wuzewu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225

            output = postprocess(
                paths=paths,
                images=images,
                data_out=data_out,
                score_thresh=score_thresh,
                label_names=self.label_names,
                output_dir=output_dir,
                handle_id=iter_id * batch_size,
                visualization=visualization)
            res.extend(output)
        return res

226 227 228 229 230
    def save_inference_model(self,
                             dirname,
                             model_filename=None,
                             params_filename=None,
                             combined=True):
W
wuzewu 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        if combined:
            model_filename = "__model__" if not model_filename else model_filename
            params_filename = "__params__" if not params_filename else params_filename
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        program, feeded_var_names, target_vars = fluid.io.load_inference_model(
            dirname=self.default_pretrained_model_path, executor=exe)

        fluid.io.save_inference_model(
            dirname=dirname,
            main_program=program,
            executor=exe,
            feeded_var_names=feeded_var_names,
            target_vars=target_vars,
            model_filename=model_filename,
            params_filename=params_filename)

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.object_detection(images=images_decode, **kwargs)
        return results

    @runnable
    def run_cmd(self, argvs):
        """
        Run as a command.
        """
        self.parser = argparse.ArgumentParser(
            description="Run the {} module.".format(self.name),
            prog='hub run {}'.format(self.name),
            usage='%(prog)s',
            add_help=True)
268 269
        self.arg_input_group = self.parser.add_argument_group(
            title="Input options", description="Input data. Required")
W
wuzewu 已提交
270
        self.arg_config_group = self.parser.add_argument_group(
271 272 273
            title="Config options",
            description=
            "Run configuration for controlling module behavior, not required.")
W
wuzewu 已提交
274 275 276
        self.add_module_config_arg()
        self.add_module_input_arg()
        args = self.parser.parse_args(argvs)
W
wuzewu 已提交
277
        results = self.object_detection(
W
wuzewu 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290
            paths=[args.input_path],
            batch_size=args.batch_size,
            use_gpu=args.use_gpu,
            output_dir=args.output_dir,
            visualization=args.visualization,
            score_thresh=args.score_thresh)
        return results

    def add_module_config_arg(self):
        """
        Add the command config options.
        """
        self.arg_config_group.add_argument(
291 292 293 294
            '--use_gpu',
            type=ast.literal_eval,
            default=False,
            help="whether use GPU or not")
W
wuzewu 已提交
295
        self.arg_config_group.add_argument(
296 297 298 299
            '--output_dir',
            type=str,
            default='detection_result',
            help="The directory to save output images.")
W
wuzewu 已提交
300
        self.arg_config_group.add_argument(
301 302 303 304
            '--visualization',
            type=ast.literal_eval,
            default=False,
            help="whether to save output as images.")
W
wuzewu 已提交
305 306 307 308 309 310

    def add_module_input_arg(self):
        """
        Add the command input options.
        """
        self.arg_input_group.add_argument(
311 312 313 314 315 316 317 318 319 320 321
            '--input_path', type=str, help="path to image.")
        self.arg_input_group.add_argument(
            '--batch_size',
            type=ast.literal_eval,
            default=1,
            help="batch size.")
        self.arg_input_group.add_argument(
            '--score_thresh',
            type=ast.literal_eval,
            default=0.5,
            help="threshold for object detecion.")