text_classifier.py 4.1 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
Zeyu Chen 已提交
15
"""Finetuning on classification task """
16 17

import argparse
18
import ast
19
import paddle.fluid as fluid
W
wuzewu 已提交
20
import paddlehub as hub
21 22 23 24

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
25
parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for finetuning, input should be True or False")
26 27
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
S
Steffy-zxf 已提交
28
parser.add_argument("--warmup_proportion", type=float, default=0.1, help="Warmup proportion params for warmup strategy")
29 30 31
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.")
W
wuzewu 已提交
32
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
33 34 35 36
args = parser.parse_args()
# yapf: enable.

if __name__ == '__main__':
Z
Zeyu Chen 已提交
37

S
Steffy-zxf 已提交
38 39
    # Load Paddlehub ERNIE Tiny pretrained model
    module = hub.Module(name="ernie_tiny")
K
kinghuin 已提交
40 41
    inputs, outputs, program = module.context(
        trainable=True, max_seq_len=args.max_seq_len)
S
Steffy-zxf 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

    # Download dataset and use accuracy as metrics
    # Choose dataset: GLUE/XNLI/ChinesesGLUE/NLPCC-DBQA/LCQMC
    # metric should be acc, f1 or matthews
    dataset = hub.dataset.ChnSentiCorp()
    metrics_choices = ["acc"]

    # For ernie_tiny, it use sub-word to tokenize chinese sentence
    # If not ernie tiny, sp_model_path and word_dict_path should be set None
    reader = hub.reader.ClassifyReader(
        dataset=dataset,
        vocab_path=module.get_vocab_path(),
        max_seq_len=args.max_seq_len,
        sp_model_path=module.get_spm_path(),
        word_dict_path=module.get_word_dict_path())

58
    # Construct transfer learning network
W
wuzewu 已提交
59 60 61
    # Use "pooled_output" for classification tasks on an entire sentence.
    # Use "sequence_output" for token-level output.
    pooled_output = outputs["pooled_output"]
62

W
wuzewu 已提交
63
    # Setup feed list for data feeder
K
kinghuin 已提交
64
    # Must feed all the tensor of module need
W
wuzewu 已提交
65
    feed_list = [
66 67 68 69
        inputs["input_ids"].name,
        inputs["position_ids"].name,
        inputs["segment_ids"].name,
        inputs["input_mask"].name,
W
wuzewu 已提交
70
    ]
Z
zhangxuefei 已提交
71

72
    # Select finetune strategy, setup config and finetune
W
wuzewu 已提交
73
    strategy = hub.AdamWeightDecayStrategy(
S
Steffy-zxf 已提交
74
        warmup_proportion=args.warmup_proportion,
W
wuzewu 已提交
75
        weight_decay=args.weight_decay,
S
Steffy-zxf 已提交
76
        learning_rate=args.learning_rate)
Z
Zeyu Chen 已提交
77

W
wuzewu 已提交
78 79
    # Setup runing config for PaddleHub Finetune API
    config = hub.RunConfig(
W
wuzewu 已提交
80
        use_data_parallel=args.use_data_parallel,
W
wuzewu 已提交
81 82 83 84 85
        use_cuda=args.use_gpu,
        num_epoch=args.num_epoch,
        batch_size=args.batch_size,
        checkpoint_dir=args.checkpoint_dir,
        strategy=strategy)
Z
Zeyu Chen 已提交
86

87 88 89 90 91 92
    # Define a classfication finetune task by PaddleHub's API
    cls_task = hub.TextClassifierTask(
        data_reader=reader,
        feature=pooled_output,
        feed_list=feed_list,
        num_classes=dataset.num_labels,
K
kinghuin 已提交
93 94
        config=config,
        metrics_choices=metrics_choices)
95

W
wuzewu 已提交
96 97
    # Finetune and evaluate by PaddleHub's API
    # will finish training, evaluation, testing, save model automatically
98
    cls_task.finetune_and_eval()