Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleGAN
提交
fa59f69e
P
PaddleGAN
项目概览
PaddlePaddle
/
PaddleGAN
大约 1 年 前同步成功
通知
97
Star
7254
Fork
1210
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleGAN
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fa59f69e
编写于
8月 28, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add deepremaster, fix some bug
上级
6a5109c5
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
453 addition
and
13 deletion
+453
-13
applications/DeepRemaster/predict.py
applications/DeepRemaster/predict.py
+209
-0
applications/DeepRemaster/remasternet.py
applications/DeepRemaster/remasternet.py
+187
-0
applications/DeepRemaster/utils.py
applications/DeepRemaster/utils.py
+35
-0
applications/run.sh
applications/run.sh
+1
-1
applications/tools/main.py
applications/tools/main.py
+21
-12
未找到文件。
applications/DeepRemaster/predict.py
0 → 100644
浏览文件 @
fa59f69e
import
os
import
sys
cur_path
=
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))
sys
.
path
.
append
(
cur_path
)
import
paddle
import
paddle.nn
as
nn
import
cv2
from
PIL
import
Image
import
numpy
as
np
from
tqdm
import
tqdm
import
argparse
import
subprocess
import
utils
from
remasternet
import
NetworkR
,
NetworkC
from
paddle.incubate.hapi.download
import
get_path_from_url
DeepRemaster_weight_url
=
'https://paddlegan.bj.bcebos.com/applications/deep_remaster.pdparams'
parser
=
argparse
.
ArgumentParser
(
description
=
'Remastering'
)
parser
.
add_argument
(
'--input'
,
type
=
str
,
default
=
None
,
help
=
'Input video'
)
parser
.
add_argument
(
'--output'
,
type
=
str
,
default
=
'output'
,
help
=
'output dir'
)
parser
.
add_argument
(
'--reference_dir'
,
type
=
str
,
default
=
None
,
help
=
'Path to the reference image directory'
)
parser
.
add_argument
(
'--colorization'
,
action
=
'store_true'
,
default
=
False
,
help
=
'Remaster without colorization'
)
parser
.
add_argument
(
'--mindim'
,
type
=
int
,
default
=
'360'
,
help
=
'Length of minimum image edges'
)
class
DeepReasterPredictor
:
def
__init__
(
self
,
input
,
output
,
weight_path
=
None
,
colorization
=
False
,
reference_dir
=
None
,
mindim
=
360
):
self
.
input
=
input
self
.
output
=
os
.
path
.
join
(
output
,
'DeepRemaster'
)
self
.
colorization
=
colorization
self
.
reference_dir
=
reference_dir
self
.
mindim
=
mindim
if
weight_path
is
None
:
weight_path
=
get_path_from_url
(
DeepRemaster_weight_url
,
cur_path
)
state_dict
,
_
=
paddle
.
load
(
weight_path
)
self
.
modelR
=
NetworkR
()
self
.
modelR
.
load_dict
(
state_dict
[
'modelR'
])
self
.
modelR
.
eval
()
if
colorization
:
self
.
modelC
=
NetworkC
()
self
.
modelC
.
load_dict
(
state_dict
[
'modelC'
])
self
.
modelC
.
eval
()
def
run
(
self
):
outputdir
=
self
.
output
outputdir_in
=
os
.
path
.
join
(
outputdir
,
'input/'
)
os
.
makedirs
(
outputdir_in
,
exist_ok
=
True
)
outputdir_out
=
os
.
path
.
join
(
outputdir
,
'output/'
)
os
.
makedirs
(
outputdir_out
,
exist_ok
=
True
)
# Prepare reference images
if
self
.
colorization
:
if
self
.
reference_dir
is
not
None
:
import
glob
ext_list
=
[
'png'
,
'jpg'
,
'bmp'
]
reference_files
=
[]
for
ext
in
ext_list
:
reference_files
+=
glob
.
glob
(
self
.
reference_dir
+
'/*.'
+
ext
,
recursive
=
True
)
aspect_mean
=
0
minedge_dim
=
256
refs
=
[]
for
v
in
reference_files
:
refimg
=
Image
.
open
(
v
).
convert
(
'RGB'
)
w
,
h
=
refimg
.
size
aspect_mean
+=
w
/
h
refs
.
append
(
refimg
)
aspect_mean
/=
len
(
reference_files
)
target_w
=
int
(
256
*
aspect_mean
)
if
aspect_mean
>
1
else
256
target_h
=
256
if
aspect_mean
>=
1
else
int
(
256
/
aspect_mean
)
refimgs
=
[]
for
i
,
v
in
enumerate
(
refs
):
refimg
=
utils
.
addMergin
(
v
,
target_w
=
target_w
,
target_h
=
target_h
)
refimg
=
np
.
array
(
refimg
).
astype
(
'float32'
).
transpose
(
2
,
0
,
1
)
/
255.0
refimgs
.
append
(
refimg
)
refimgs
=
paddle
.
to_tensor
(
np
.
array
(
refimgs
).
astype
(
'float32'
))
refimgs
=
paddle
.
unsqueeze
(
refimgs
,
0
)
# Load video
cap
=
cv2
.
VideoCapture
(
self
.
input
)
nframes
=
int
(
cap
.
get
(
cv2
.
CAP_PROP_FRAME_COUNT
))
v_w
=
cap
.
get
(
cv2
.
CAP_PROP_FRAME_WIDTH
)
v_h
=
cap
.
get
(
cv2
.
CAP_PROP_FRAME_HEIGHT
)
minwh
=
min
(
v_w
,
v_h
)
scale
=
1
if
minwh
!=
self
.
mindim
:
scale
=
self
.
mindim
/
minwh
t_w
=
round
(
v_w
*
scale
/
16.
)
*
16
t_h
=
round
(
v_h
*
scale
/
16.
)
*
16
fps
=
cap
.
get
(
cv2
.
CAP_PROP_FPS
)
pbar
=
tqdm
(
total
=
nframes
)
block
=
5
# Process
with
paddle
.
no_grad
():
it
=
0
while
True
:
frame_pos
=
it
*
block
if
frame_pos
>=
nframes
:
break
cap
.
set
(
cv2
.
CAP_PROP_POS_FRAMES
,
frame_pos
)
if
block
>=
nframes
-
frame_pos
:
proc_g
=
nframes
-
frame_pos
else
:
proc_g
=
block
input
=
None
gtC
=
None
for
i
in
range
(
proc_g
):
index
=
frame_pos
+
i
_
,
frame
=
cap
.
read
()
frame
=
cv2
.
resize
(
frame
,
(
t_w
,
t_h
))
nchannels
=
frame
.
shape
[
2
]
if
nchannels
==
1
or
self
.
colorization
:
frame_l
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_RGB2GRAY
)
cv2
.
imwrite
(
outputdir_in
+
'%07d.png'
%
index
,
frame_l
)
frame_l
=
paddle
.
to_tensor
(
frame_l
.
astype
(
'float32'
))
frame_l
=
paddle
.
reshape
(
frame_l
,
[
frame_l
.
shape
[
0
],
frame_l
.
shape
[
1
],
1
])
frame_l
=
paddle
.
transpose
(
frame_l
,
[
2
,
0
,
1
])
frame_l
/=
255.
frame_l
=
paddle
.
reshape
(
frame_l
,
[
1
,
frame_l
.
shape
[
0
],
1
,
frame_l
.
shape
[
1
],
frame_l
.
shape
[
2
]])
elif
nchannels
==
3
:
cv2
.
imwrite
(
outputdir_in
+
'%07d.png'
%
index
,
frame
)
frame
=
frame
[:,:,::
-
1
]
## BGR -> RGB
frame_l
,
frame_ab
=
utils
.
convertRGB2LABTensor
(
frame
)
frame_l
=
frame_l
.
transpose
([
2
,
0
,
1
])
frame_ab
=
frame_ab
.
transpose
([
2
,
0
,
1
])
frame_l
=
frame_l
.
reshape
([
1
,
frame_l
.
shape
[
0
],
1
,
frame_l
.
shape
[
1
],
frame_l
.
shape
[
2
]])
frame_ab
=
frame_ab
.
reshape
([
1
,
frame_ab
.
shape
[
0
],
1
,
frame_ab
.
shape
[
1
],
frame_ab
.
shape
[
2
]])
if
input
is
not
None
:
paddle
.
concat
(
(
input
,
frame_l
),
2
)
input
=
frame_l
if
i
==
0
else
paddle
.
concat
(
(
input
,
frame_l
),
2
)
if
nchannels
==
3
and
not
self
.
colorization
:
gtC
=
frame_ab
if
i
==
0
else
paddle
.
concat
(
(
gtC
,
frame_ab
),
2
)
input
=
paddle
.
to_tensor
(
input
)
output_l
=
self
.
modelR
(
input
)
# [B, C, T, H, W]
# Save restoration output without colorization when using the option [--disable_colorization]
if
not
self
.
colorization
:
for
i
in
range
(
proc_g
):
index
=
frame_pos
+
i
if
nchannels
==
3
:
out_l
=
output_l
.
detach
()[
0
,:,
i
]
out_ab
=
gtC
[
0
,:,
i
]
out
=
paddle
.
concat
((
out_l
,
out_ab
),
axis
=
0
).
detach
().
numpy
().
transpose
((
1
,
2
,
0
))
out
=
Image
.
fromarray
(
np
.
uint8
(
utils
.
convertLAB2RGB
(
out
)
*
255
)
)
out
.
save
(
outputdir_out
+
'%07d.png'
%
(
index
)
)
else
:
raise
ValueError
(
'channels of imag3 must be 3!'
)
# Perform colorization
else
:
if
self
.
reference_dir
is
None
:
output_ab
=
self
.
modelC
(
output_l
)
else
:
output_ab
=
self
.
modelC
(
output_l
,
refimgs
)
output_l
=
output_l
.
detach
()
output_ab
=
output_ab
.
detach
()
for
i
in
range
(
proc_g
):
index
=
frame_pos
+
i
out_l
=
output_l
[
0
,:,
i
,:,:]
out_c
=
output_ab
[
0
,:,
i
,:,:]
output
=
paddle
.
concat
((
out_l
,
out_c
),
axis
=
0
).
numpy
().
transpose
((
1
,
2
,
0
))
output
=
Image
.
fromarray
(
np
.
uint8
(
utils
.
convertLAB2RGB
(
output
)
*
255
)
)
output
.
save
(
outputdir_out
+
'%07d.png'
%
index
)
it
=
it
+
1
pbar
.
update
(
proc_g
)
# Save result videos
outfile
=
os
.
path
.
join
(
outputdir
,
self
.
input
.
split
(
'/'
)[
-
1
].
split
(
'.'
)[
0
])
cmd
=
'ffmpeg -y -r %d -i %s%%07d.png -vcodec libx264 -pix_fmt yuv420p -r %d %s_in.mp4'
%
(
fps
,
outputdir_in
,
fps
,
outfile
)
subprocess
.
call
(
cmd
,
shell
=
True
)
cmd
=
'ffmpeg -y -r %d -i %s%%07d.png -vcodec libx264 -pix_fmt yuv420p -r %d %s_out.mp4'
%
(
fps
,
outputdir_out
,
fps
,
outfile
)
subprocess
.
call
(
cmd
,
shell
=
True
)
cmd
=
'ffmpeg -y -i %s_in.mp4 -vf "[in] pad=2.01*iw:ih [left];movie=%s_out.mp4[right];[left][right] overlay=main_w/2:0,scale=2*iw/2:2*ih/2[out]" %s_comp.mp4'
%
(
outfile
,
outfile
,
outfile
)
subprocess
.
call
(
cmd
,
shell
=
True
)
cap
.
release
()
pbar
.
close
()
return
outputdir_out
,
'%s_out.mp4'
%
outfile
if
__name__
==
"__main__"
:
args
=
parser
.
parse_args
()
paddle
.
disable_static
()
predictor
=
DeepReasterPredictor
(
args
.
input
,
args
.
output
,
colorization
=
args
.
colorization
,
reference_dir
=
args
.
reference_dir
,
mindim
=
args
.
mindim
)
predictor
.
run
()
\ No newline at end of file
applications/DeepRemaster/remasternet.py
0 → 100644
浏览文件 @
fa59f69e
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
class
TempConv
(
nn
.
Layer
):
def
__init__
(
self
,
in_planes
,
out_planes
,
kernel_size
=
(
1
,
3
,
3
),
stride
=
(
1
,
1
,
1
),
padding
=
(
0
,
1
,
1
)
):
super
(
TempConv
,
self
).
__init__
()
self
.
conv3d
=
nn
.
Conv3d
(
in_planes
,
out_planes
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
)
self
.
bn
=
nn
.
BatchNorm
(
out_planes
)
def
forward
(
self
,
x
):
return
F
.
elu
(
self
.
bn
(
self
.
conv3d
(
x
)))
class
Upsample
(
nn
.
Layer
):
def
__init__
(
self
,
in_planes
,
out_planes
,
scale_factor
=
(
1
,
2
,
2
)):
super
(
Upsample
,
self
).
__init__
()
self
.
scale_factor
=
scale_factor
self
.
conv3d
=
nn
.
Conv3d
(
in_planes
,
out_planes
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
1
,
1
),
padding
=
(
1
,
1
,
1
)
)
self
.
bn
=
nn
.
BatchNorm
(
out_planes
)
def
forward
(
self
,
x
):
out_size
=
x
.
shape
[
2
:]
for
i
in
range
(
3
):
out_size
[
i
]
=
self
.
scale_factor
[
i
]
*
out_size
[
i
]
return
F
.
elu
(
self
.
bn
(
self
.
conv3d
(
F
.
interpolate
(
x
,
size
=
out_size
,
mode
=
'trilinear'
,
align_corners
=
False
,
data_format
=
'NCDHW'
,
align_mode
=
0
))))
class
UpsampleConcat
(
nn
.
Layer
):
def
__init__
(
self
,
in_planes_up
,
in_planes_flat
,
out_planes
):
super
(
UpsampleConcat
,
self
).
__init__
()
self
.
conv3d
=
TempConv
(
in_planes_up
+
in_planes_flat
,
out_planes
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
1
,
1
),
padding
=
(
1
,
1
,
1
)
)
def
forward
(
self
,
x1
,
x2
):
scale_factor
=
(
1
,
2
,
2
)
out_size
=
x1
.
shape
[
2
:]
for
i
in
range
(
3
):
out_size
[
i
]
=
scale_factor
[
i
]
*
out_size
[
i
]
x1
=
F
.
interpolate
(
x1
,
size
=
out_size
,
mode
=
'trilinear'
,
align_corners
=
False
,
data_format
=
'NCDHW'
,
align_mode
=
0
)
x
=
paddle
.
concat
([
x1
,
x2
],
axis
=
1
)
return
self
.
conv3d
(
x
)
class
SourceReferenceAttention
(
paddle
.
fluid
.
dygraph
.
Layer
):
"""
Source-Reference Attention Layer
"""
def
__init__
(
self
,
in_planes_s
,
in_planes_r
):
"""
Parameters
----------
in_planes_s: int
Number of input source feature vector channels.
in_planes_r: int
Number of input reference feature vector channels.
"""
super
(
SourceReferenceAttention
,
self
).
__init__
()
self
.
query_conv
=
nn
.
Conv3d
(
in_channels
=
in_planes_s
,
out_channels
=
in_planes_s
//
8
,
kernel_size
=
1
)
self
.
key_conv
=
nn
.
Conv3d
(
in_channels
=
in_planes_r
,
out_channels
=
in_planes_r
//
8
,
kernel_size
=
1
)
self
.
value_conv
=
nn
.
Conv3d
(
in_channels
=
in_planes_r
,
out_channels
=
in_planes_r
,
kernel_size
=
1
)
self
.
gamma
=
self
.
create_parameter
(
shape
=
[
1
],
dtype
=
self
.
query_conv
.
weight
.
dtype
,
default_initializer
=
paddle
.
fluid
.
initializer
.
Constant
(
0.0
))
def
forward
(
self
,
source
,
reference
):
s_batchsize
,
sC
,
sT
,
sH
,
sW
=
source
.
shape
r_batchsize
,
rC
,
rT
,
rH
,
rW
=
reference
.
shape
proj_query
=
paddle
.
reshape
(
self
.
query_conv
(
source
),
[
s_batchsize
,
-
1
,
sT
*
sH
*
sW
])
proj_query
=
paddle
.
transpose
(
proj_query
,
[
0
,
2
,
1
])
proj_key
=
paddle
.
reshape
(
self
.
key_conv
(
reference
),
[
r_batchsize
,
-
1
,
rT
*
rW
*
rH
])
energy
=
paddle
.
bmm
(
proj_query
,
proj_key
)
attention
=
F
.
softmax
(
energy
)
proj_value
=
paddle
.
reshape
(
self
.
value_conv
(
reference
),
[
r_batchsize
,
-
1
,
rT
*
rH
*
rW
])
out
=
paddle
.
bmm
(
proj_value
,
paddle
.
transpose
(
attention
,
[
0
,
2
,
1
]))
out
=
paddle
.
reshape
(
out
,
[
s_batchsize
,
sC
,
sT
,
sH
,
sW
])
out
=
self
.
gamma
*
out
+
source
return
out
,
attention
class
NetworkR
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
NetworkR
,
self
).
__init__
()
self
.
layers
=
nn
.
Sequential
(
nn
.
ReplicationPad3d
((
1
,
1
,
1
,
1
,
1
,
1
)),
TempConv
(
1
,
64
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
2
,
2
),
padding
=
(
0
,
0
,
0
)
),
TempConv
(
64
,
128
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
(
1
,
1
,
1
)
),
TempConv
(
128
,
128
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
(
1
,
1
,
1
)
),
TempConv
(
128
,
256
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
2
,
2
),
padding
=
(
1
,
1
,
1
)
),
TempConv
(
256
,
256
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
(
1
,
1
,
1
)
),
TempConv
(
256
,
256
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
(
1
,
1
,
1
)
),
TempConv
(
256
,
256
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
(
1
,
1
,
1
)
),
TempConv
(
256
,
256
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
(
1
,
1
,
1
)
),
Upsample
(
256
,
128
),
TempConv
(
128
,
64
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
(
1
,
1
,
1
)
),
TempConv
(
64
,
64
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
(
1
,
1
,
1
)
),
Upsample
(
64
,
16
),
nn
.
Conv3d
(
16
,
1
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
1
,
1
),
padding
=
(
1
,
1
,
1
)
)
)
def
forward
(
self
,
x
):
return
paddle
.
clip
((
x
+
paddle
.
fluid
.
layers
.
tanh
(
self
.
layers
(
((
x
*
1
).
detach
())
-
0.4462414
)
)),
0.0
,
1.0
)
class
NetworkC
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
NetworkC
,
self
).
__init__
()
self
.
down1
=
nn
.
Sequential
(
nn
.
ReplicationPad3d
((
1
,
1
,
1
,
1
,
0
,
0
)),
TempConv
(
1
,
64
,
stride
=
(
1
,
2
,
2
),
padding
=
(
0
,
0
,
0
)
),
TempConv
(
64
,
128
),
TempConv
(
128
,
128
),
TempConv
(
128
,
256
,
stride
=
(
1
,
2
,
2
)
),
TempConv
(
256
,
256
),
TempConv
(
256
,
256
),
TempConv
(
256
,
512
,
stride
=
(
1
,
2
,
2
)
),
TempConv
(
512
,
512
),
TempConv
(
512
,
512
)
)
self
.
flat
=
nn
.
Sequential
(
TempConv
(
512
,
512
),
TempConv
(
512
,
512
)
)
self
.
down2
=
nn
.
Sequential
(
TempConv
(
512
,
512
,
stride
=
(
1
,
2
,
2
)
),
TempConv
(
512
,
512
),
)
self
.
stattn1
=
SourceReferenceAttention
(
512
,
512
)
# Source-Reference Attention
self
.
stattn2
=
SourceReferenceAttention
(
512
,
512
)
# Source-Reference Attention
self
.
selfattn1
=
SourceReferenceAttention
(
512
,
512
)
# Self Attention
self
.
conv1
=
TempConv
(
512
,
512
)
self
.
up1
=
UpsampleConcat
(
512
,
512
,
512
)
# 1/8
self
.
selfattn2
=
SourceReferenceAttention
(
512
,
512
)
# Self Attention
self
.
conv2
=
TempConv
(
512
,
256
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
1
,
1
),
padding
=
(
1
,
1
,
1
)
)
self
.
up2
=
nn
.
Sequential
(
Upsample
(
256
,
128
),
# 1/4
TempConv
(
128
,
64
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
1
,
1
),
padding
=
(
1
,
1
,
1
)
)
)
self
.
up3
=
nn
.
Sequential
(
Upsample
(
64
,
32
),
# 1/2
TempConv
(
32
,
16
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
1
,
1
),
padding
=
(
1
,
1
,
1
)
)
)
self
.
up4
=
nn
.
Sequential
(
Upsample
(
16
,
8
),
# 1/1
nn
.
Conv3d
(
8
,
2
,
kernel_size
=
(
3
,
3
,
3
),
stride
=
(
1
,
1
,
1
),
padding
=
(
1
,
1
,
1
)
)
)
self
.
reffeatnet1
=
nn
.
Sequential
(
TempConv
(
3
,
64
,
stride
=
(
1
,
2
,
2
)
),
TempConv
(
64
,
128
),
TempConv
(
128
,
128
),
TempConv
(
128
,
256
,
stride
=
(
1
,
2
,
2
)
),
TempConv
(
256
,
256
),
TempConv
(
256
,
256
),
TempConv
(
256
,
512
,
stride
=
(
1
,
2
,
2
)
),
TempConv
(
512
,
512
),
TempConv
(
512
,
512
),
)
self
.
reffeatnet2
=
nn
.
Sequential
(
TempConv
(
512
,
512
,
stride
=
(
1
,
2
,
2
)
),
TempConv
(
512
,
512
),
TempConv
(
512
,
512
),
)
def
forward
(
self
,
x
,
x_refs
=
None
):
x1
=
self
.
down1
(
x
-
0.4462414
)
if
x_refs
is
not
None
:
x_refs
=
paddle
.
transpose
(
x_refs
,
[
0
,
2
,
1
,
3
,
4
])
# [B,T,C,H,W] --> [B,C,T,H,W]
reffeat
=
self
.
reffeatnet1
(
x_refs
-
0.48
)
x1
,
_
=
self
.
stattn1
(
x1
,
reffeat
)
x2
=
self
.
flat
(
x1
)
out
=
self
.
down2
(
x1
)
if
x_refs
is
not
None
:
reffeat2
=
self
.
reffeatnet2
(
reffeat
)
out
,
_
=
self
.
stattn2
(
out
,
reffeat2
)
out
=
self
.
conv1
(
out
)
out
,
_
=
self
.
selfattn1
(
out
,
out
)
out
=
self
.
up1
(
out
,
x2
)
out
,
_
=
self
.
selfattn2
(
out
,
out
)
out
=
self
.
conv2
(
out
)
out
=
self
.
up2
(
out
)
out
=
self
.
up3
(
out
)
out
=
self
.
up4
(
out
)
return
F
.
sigmoid
(
out
)
\ No newline at end of file
applications/DeepRemaster/utils.py
0 → 100644
浏览文件 @
fa59f69e
import
paddle
from
skimage
import
color
import
numpy
as
np
from
PIL
import
Image
def
convertLAB2RGB
(
lab
):
lab
[:,
:,
0
:
1
]
=
lab
[:,
:,
0
:
1
]
*
100
# [0, 1] -> [0, 100]
lab
[:,
:,
1
:
3
]
=
np
.
clip
(
lab
[:,
:,
1
:
3
]
*
255
-
128
,
-
100
,
100
)
# [0, 1] -> [-128, 128]
rgb
=
color
.
lab2rgb
(
lab
.
astype
(
np
.
float64
)
)
return
rgb
def
convertRGB2LABTensor
(
rgb
):
lab
=
color
.
rgb2lab
(
np
.
asarray
(
rgb
)
)
# RGB -> LAB L[0, 100] a[-127, 128] b[-128, 127]
ab
=
np
.
clip
(
lab
[:,
:,
1
:
3
]
+
128
,
0
,
255
)
# AB --> [0, 255]
ab
=
paddle
.
to_tensor
(
ab
.
astype
(
'float32'
))
/
255.
L
=
lab
[:,
:,
0
]
*
2.55
# L --> [0, 255]
L
=
Image
.
fromarray
(
np
.
uint8
(
L
)
)
L
=
paddle
.
to_tensor
(
np
.
array
(
L
).
astype
(
'float32'
)[...,
np
.
newaxis
]
/
255.0
)
return
L
,
ab
def
addMergin
(
img
,
target_w
,
target_h
,
background_color
=
(
0
,
0
,
0
)):
width
,
height
=
img
.
size
if
width
==
target_w
and
height
==
target_h
:
return
img
scale
=
max
(
target_w
,
target_h
)
/
max
(
width
,
height
)
width
=
int
(
width
*
scale
/
16.
)
*
16
height
=
int
(
height
*
scale
/
16.
)
*
16
img
=
img
.
resize
((
width
,
height
),
Image
.
BICUBIC
)
xp
=
(
target_w
-
width
)
//
2
yp
=
(
target_h
-
height
)
//
2
result
=
Image
.
new
(
img
.
mode
,
(
target_w
,
target_h
),
background_color
)
result
.
paste
(
img
,
(
xp
,
yp
))
return
result
applications/run.sh
浏览文件 @
fa59f69e
...
...
@@ -10,4 +10,4 @@ cd -
# proccess_order 使用模型的顺序
python tools/main.py
\
--input
input.mp4
--output
output
--proccess_order
DAIN DeOldify EDVR
--input
input.mp4
--output
output
--proccess_order
DAIN De
epRemaster De
Oldify EDVR
applications/tools/main.py
浏览文件 @
fa59f69e
...
...
@@ -5,23 +5,30 @@ import argparse
import
paddle
from
DAIN.predict
import
VideoFrameInterp
from
DeepRemaster.predict
import
DeepReasterPredictor
from
DeOldify.predict
import
DeOldifyPredictor
from
EDVR.predict
import
EDVRPredictor
parser
=
argparse
.
ArgumentParser
(
description
=
'Fix video'
)
parser
.
add_argument
(
'--input'
,
type
=
str
,
default
=
None
,
help
=
'Input video'
)
parser
.
add_argument
(
'--output'
,
type
=
str
,
default
=
'output'
,
help
=
'output dir'
)
parser
.
add_argument
(
'--DAIN_weight'
,
type
=
str
,
default
=
None
,
help
=
'Path to the reference image directory'
)
parser
.
add_argument
(
'--DeOldify_weight'
,
type
=
str
,
default
=
None
,
help
=
'Path to the reference image directory'
)
parser
.
add_argument
(
'--EDVR_weight'
,
type
=
str
,
default
=
None
,
help
=
'Path to the reference image directory'
)
parser
.
add_argument
(
'--DAIN_weight'
,
type
=
str
,
default
=
None
,
help
=
'Path to model weight'
)
parser
.
add_argument
(
'--DeepRemaster_weight'
,
type
=
str
,
default
=
None
,
help
=
'Path to model weight'
)
parser
.
add_argument
(
'--DeOldify_weight'
,
type
=
str
,
default
=
None
,
help
=
'Path to model weight'
)
parser
.
add_argument
(
'--EDVR_weight'
,
type
=
str
,
default
=
None
,
help
=
'Path to model weight'
)
# DAIN args
parser
.
add_argument
(
'--time_step'
,
type
=
float
,
default
=
0.5
,
help
=
'choose the time steps'
)
# DeepRemaster args
parser
.
add_argument
(
'--reference_dir'
,
type
=
str
,
default
=
None
,
help
=
'Path to the reference image directory'
)
parser
.
add_argument
(
'--colorization'
,
action
=
'store_true'
,
default
=
False
,
help
=
'Remaster with colorization'
)
parser
.
add_argument
(
'--mindim'
,
type
=
int
,
default
=
360
,
help
=
'Length of minimum image edges'
)
#process order support model name:[DAIN, DeepRemaster, DeOldify, EDVR]
parser
.
add_argument
(
'--proccess_order'
,
type
=
str
,
default
=
'none'
,
nargs
=
'+'
,
help
=
'Process order'
)
if
__name__
==
"__main__"
:
args
=
parser
.
parse_args
()
print
(
'args...'
,
args
)
orders
=
args
.
proccess_order
temp_video_path
=
None
...
...
@@ -32,19 +39,21 @@ if __name__ == "__main__":
predictor
=
VideoFrameInterp
(
args
.
time_step
,
args
.
DAIN_weight
,
temp_video_path
,
output_path
=
args
.
output
)
frames_path
,
temp_video_path
=
predictor
.
run
()
elif
order
==
'DeepRemaster'
:
paddle
.
disable_static
()
predictor
=
DeepReasterPredictor
(
temp_video_path
,
args
.
output
,
weight_path
=
args
.
DeepRemaster_weight
,
colorization
=
args
.
colorization
,
reference_dir
=
args
.
reference_dir
,
mindim
=
args
.
mindim
)
frames_path
,
temp_video_path
=
predictor
.
run
()
paddle
.
enable_static
()
elif
order
==
'DeOldify'
:
print
(
'frames:'
,
frames_path
)
print
(
'video_path:'
,
temp_video_path
)
paddle
.
disable_static
()
predictor
=
DeOldifyPredictor
(
temp_video_path
,
args
.
output
,
weight_path
=
args
.
DeOldify_weight
)
frames_path
,
temp_video_path
=
predictor
.
run
()
print
(
'frames:'
,
frames_path
)
print
(
'video_path:'
,
temp_video_path
)
paddle
.
enable_static
()
elif
order
==
'EDVR'
:
predictor
=
EDVRPredictor
(
temp_video_path
,
args
.
output
,
weight_path
=
args
.
EDVR_weight
)
frames_path
,
temp_video_path
=
predictor
.
run
()
print
(
'frames:'
,
frames_path
)
print
(
'video_path:'
,
temp_video_path
)
print
(
'Model {} output frames path:'
.
format
(
order
),
frames_path
)
print
(
'Model {} output video path:'
.
format
(
order
),
temp_video_path
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录