提交 6a5109c5 编写于 作者: L LielinJiang

Merge branch 'master' of https://github.com/PaddlePaddle/PaddleGAN into add-deep-remaster

English (./README.md)
# Usage
To compute the FID score between two datasets, where images of each dataset are contained in an individual folder:
wget https://paddlegan.bj.bcebos.com/InceptionV3.pdparams
```
python test_fid_score.py --image_data_path1 /path/to/dataset1 --image_data_path2 /path/to/dataset2 --inference_model ./InceptionV3.pdparams
```
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import fnmatch
import numpy as np
import cv2
from cv2 import imread
from scipy import linalg
import paddle.fluid as fluid
from inception import InceptionV3
from paddle.fluid.dygraph.base import to_variable
def tqdm(x):
return x
""" based on https://github.com/mit-han-lab/gan-compression/blob/master/metric/fid_score.py
"""
"""
inceptionV3 pretrain model is convert from pytorch, pretrain_model url is https://paddle-gan-models.bj.bcebos.com/params_inceptionV3.tar.gz
"""
def _calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
m1 = np.atleast_1d(mu1)
m2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'
diff = mu1 - mu2
t = sigma1.dot(sigma2)
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) -
2 * tr_covmean)
def _get_activations_from_ims(img, model, batch_size, dims, use_gpu,
premodel_path):
n_batches = (len(img) + batch_size - 1) // batch_size
n_used_img = len(img)
pred_arr = np.empty((n_used_img, dims))
for i in tqdm(range(n_batches)):
start = i * batch_size
end = start + batch_size
if end > len(img):
end = len(img)
images = img[start:end]
if images.shape[1] != 3:
images = images.transpose((0, 3, 1, 2))
images /= 255
images = to_variable(images)
param_dict, _ = fluid.load_dygraph(premodel_path)
model.set_dict(param_dict)
model.eval()
pred = model(images)[0][0]
pred_arr[start:end] = pred.reshape(end - start, -1)
return pred_arr
def _compute_statistic_of_img(img, model, batch_size, dims, use_gpu,
premodel_path):
act = _get_activations_from_ims(img, model, batch_size, dims, use_gpu,
premodel_path)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def calculate_fid_given_img(img_fake,
img_real,
batch_size,
use_gpu,
dims,
premodel_path,
model=None):
assert os.path.exists(
premodel_path
), 'pretrain_model path {} is not exists! Please download it first'.format(
premodel_path)
if model is None:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx])
m1, s1 = _compute_statistic_of_img(img_fake, model, batch_size, dims,
use_gpu, premodel_path)
m2, s2 = _compute_statistic_of_img(img_real, model, batch_size, dims,
use_gpu, premodel_path)
fid_value = _calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
def _get_activations(files, model, batch_size, dims, use_gpu, premodel_path):
if len(files) % batch_size != 0:
print(('Warning: number of images is not a multiple of the '
'batch size. Some samples are going to be ignored.'))
if batch_size > len(files):
print(('Warning: batch size is bigger than the datasets size. '
'Setting batch size to datasets size'))
batch_size = len(files)
n_batches = len(files) // batch_size
n_used_imgs = n_batches * batch_size
pred_arr = np.empty((n_used_imgs, dims))
for i in tqdm(range(n_batches)):
start = i * batch_size
end = start + batch_size
images = np.array(
[imread(str(f)).astype(np.float32) for f in files[start:end]])
if len(images.shape) != 4:
images = imread(str(files[start]))
images = cv2.cvtColor(images, cv2.COLOR_BGR2GRAY)
images = np.array([images.astype(np.float32)])
images = images.transpose((0, 3, 1, 2))
images /= 255
images = to_variable(images)
param_dict, _ = fluid.load_dygraph(premodel_path)
model.set_dict(param_dict)
model.eval()
pred = model(images)[0][0].numpy()
pred_arr[start:end] = pred.reshape(end - start, -1)
return pred_arr
def _calculate_activation_statistics(files,
model,
premodel_path,
batch_size=50,
dims=2048,
use_gpu=False):
act = _get_activations(files, model, batch_size, dims, use_gpu,
premodel_path)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def _compute_statistics_of_path(path, model, batch_size, dims, use_gpu,
premodel_path):
if path.endswith('.npz'):
f = np.load(path)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
files = []
for root, dirnames, filenames in os.walk(path):
for filename in fnmatch.filter(
filenames, '*.jpg') or fnmatch.filter(filenames, '*.png'):
files.append(os.path.join(root, filename))
m, s = _calculate_activation_statistics(files, model, premodel_path,
batch_size, dims, use_gpu)
return m, s
def calculate_fid_given_paths(paths,
premodel_path,
batch_size,
use_gpu,
dims,
model=None):
assert os.path.exists(
premodel_path
), 'pretrain_model path {} is not exists! Please download it first'.format(
premodel_path)
for p in paths:
if not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)
if model is None:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx], class_dim=1008)
m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, dims,
use_gpu, premodel_path)
m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, dims,
use_gpu, premodel_path)
fid_value = _calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
此差异已折叠。
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import argparse
from compute_fid import *
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--image_data_path1',
type=str,
default='./real',
help='path of image data')
parser.add_argument('--image_data_path2',
type=str,
default='./fake',
help='path of image data')
parser.add_argument('--inference_model',
type=str,
default='./pretrained/params_inceptionV3',
help='path of inference_model.')
parser.add_argument('--use_gpu',
type=bool,
default=True,
help='default use gpu.')
parser.add_argument('--batch_size',
type=int,
default=1,
help='sample number in a batch for inference.')
args = parser.parse_args()
return args
def main():
args = parse_args()
path1 = args.image_data_path1
path2 = args.image_data_path2
paths = (path1, path2)
inference_model_path = args.inference_model
batch_size = args.batch_size
with fluid.dygraph.guard():
fid_value = calculate_fid_given_paths(paths, inference_model_path,
batch_size, args.use_gpu, 2048)
print('FID: ', fid_value)
if __name__ == "__main__":
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部